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1. Introduction to Hecke algebra - Elad Zelingher

1.1. Bi-invariant K-Hecke algebra of G. Let F be a non-archimedean local field with ring
of integers OF , maximal ideal pF , uniformizer $F , residual field Fq. Let G be a split connected
reductive group. Fix a Borel subgroup B = AN .

Definition. The co-characters of A is

X∗(A) = Hom(Gm, A).

Fix κ = G(OF ) to be a maximal compact open subgroup. Then A(OF ) = A ∩ κ. Let A($) =
A/A(OF ).

Example 1.1. Let G = GLn and A be the diagonal torus. Then we have identification

A($) =
{

diag($k1 , · · · , $kn) | k1, · · · , kn ∈ Z
}
.

We have an isomorphism X∗(A) ∼= A($) given by µ̌ 7→ µ̌($).
We will talk about the algebra H(G � K) = H(K\G/K)for some compact open subgroup

K ⊆ G(F ), where

H(G �K) = {f ∈ C∞c (G) | f(k1gk2) = f(g),∀k1, k2 ∈ K, g ∈ G}.
Today we will be interested in the cases

• K = G(O);
• K = the Iwahori subgroup.

Why study this? We want to study representations π of G(F ) that have a fixed K-vector. Every
such π admits a representation of H(G �K).
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1.2. Spherical Hecke algebra. This is the case K = G(OF ). H(G � F ) is an algebra, the
product being convolution

(f1 ∗ f2)(g) =

∫
G(F )

f1(x−1)f2(xg)dx.

For K = G(OF ), we have the Cartan decomposition

G(F ) = tµ̌∈X∗(A)dom
G(OF )$µ̌

FG(OF ).

Here, X∗(A)dom consists of dominant co-characters. By applying the Gelfand’s trick to involution,
we have that

Proposition 1.1. H(G �K) is commutative if K = G(OF ).

Example 1.2. For G = GLn, the involution g 7→ tg fixes the diagonal matrices and sends GL(OF )
to itself.

Remark. In general, H(G�K) is not commutative. However, if µ̌1, µ̌2 are dominant characters,
then we have

χK$µ̌1$µ̌2K = χK$µ̌1K ∗ χK$µ̌2K .

Therefore, R+
K , the subalgebra of H(G �K) generated by χK$µ̌K , then R+

K is commutative and
we have

H(G �K) = H(κ �K) ∗R+
K ∗ H(κ �K).

Here H(κ � K) is non-commutative but finite dimensional, and R+
K is commutative but infinite

dimensional.

1.3. Iwahori-Matsumoto Hecke algebra. Consider the quotient map G(O) � G(Fq). Let I
be the pre-image of B(Fq) under this quotient map.

Let W be the Weyl group of G and W̃ = W n A($) be the extended affine Weyl group. We
have the Bruhat-Iwahori decomposition:

G(F ) =
⊔
w∈W̃

IwI.

For w ∈ W̃ , fw = χIwI form a basis of H(G(F ) � I). The algebra H(G(F ) � I) is isomorphic to

the Iwahori-Matsumoto algebra. The latter is defined as follows. W̃ has a decomposition

W̃ = Waff o π1(G).

Waff is a Coxeter group, so it is equipped with a standard presentation with generators and
relations. The Iwahori-Matsumoto algebra is the Hecke algebra associated to the Coxeter system
(i.e. for each simple reflection s there is a Ts, and for each generator h of π1(G) there is Th,
satisfying all the relations of the Coxeter system and semi-direct product except that s2 = 1 is
replaced by T 2

s = qTs + q). The isomorphism is given by fw = hn (
∏
j sij ) 7→ Th · Tsi1 · · · · · Tsir .

Let R+
I = {f$µ̌ | µ̌ is dominant}. One can show fw is always invertible. Define

RI = 〈f$µ̌ , f−1
$µ̌ | µ̌ is dominant〉.

This is a commutative subalgebra of H(G � I). Tempting to define a map

A($)→ R×I
$µ 7→ f$µ .

But this will not be a homomorphism of groups. If µ̌1, µ̌2 are dominant, then

f$µ1$µ2 = f$µ1 ∗ f$µ2 .

Any co-character λ̌ is of the form λ̌ = µ̌1(µ̌2)−1 where µ̌1 and µ̌2 are dominant. For w ∈ W̃ , write

Tw = q−
l(w)

2 fw
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where l : W̃ →Waff → Z≥0 is the length. Define for λ̌

θ(λ̌) = (Tµ̌1
) · (Tµ̌2

)−1.

Then θ is well-defined and is a homomorphism of groups

θ : A($)→ R×I .

1.4. Bernstein-Zelevinsky relation.

Theorem 1.1. Let s be a simple reflection in W . We have the following identity

θ(λ̌)Ts − Tsθ(s(λ̌)) = Tsθ(λ̌)− θ(s(λ̌))Ts = (q
1
2 − q− 1

2 )
θ(λ̌)− θ(s(λ̌))

1− θ(α̌)−1
.

where α̌ is a certain co-character s(α̌) = α̌−1.

Corollary 1.1. The center of H(G � I) is∑
λ̌

aλ̌θ(λ̌) | awλ̌ = aλ̌,∀w ∈W, λ̌ ∈ X∗(A)dom

 .

2. The nilpotent cone, Springer fibers & resolution and Steinberg variety -
Alexander Hazeltine

2.1. The nilpotent cone.

• G = complex (semisimple) reductive group, actually we are thinking about Ĝ(C);
• g = Lie(G)

Let q : g→ g/G = h/W be the adjoint quotient map. The nilpotent cone is N =
⋃

0∈ŌO

Example 2.1. For G = GLn, N = {x ∈ gln | xn = 0}. In this case, one can parametrize the
nilpotent elements by

{nilpotent matrices}/conjugate↔ {Jordan normal forms} ↔ {partitions of n}.

The same also works for SLn. Take n = 2. There are two conjugacy classes of nilpotent matrices:

( 0 0
0 0 ) Oλ0

= {( 0 0
0 0 )}

( 0 1
0 0 ) Oλ1

= {x ∈ sl2 | rank(x) = 1}.

Example 2.2. Let G = Sp2n. The nilpotent orbits of Sp2n can also be parametrized by certain
partitions:

{nilpotent orbits of Sp2n(C)} ↔ {partition of 2n | odd partitions occur with even multiplicities}.

Take n = 4, then we have the closure including ordering and dimensions

O[4] 8

O[22] 6

O[2 12] 4

O[14] 0
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In general, for Sp2n(C), let ri = |{j ∈ λj = i}| and si = |{j | λj ≥ i}|. Then

dimOλ = 2n2 + n− 1

2

∑
s2
i −

1

2

∑
odd i

ri.

We have Oλ1 ≤ Oλ2 if and only if λ1 ≤ λ2 under dominance ordering.

Proposition 2.1. (1) N is irreducible, reduced and normal;
(2) G acts on N by conjugation, with finitely many orbits, each of which has even dimension.

2.2. Springer resolution.

Definition. The Springer resolution is the projection to the first factor

π : Ñ = {(x,B) ∈ N × B | x ∈ b} → N

where B is the variety of Borel subalgebras of g.
The Springer fiber of x ∈ N is π−1

s (X). For x ∈ Oλ, set Fλ = π−1
s (x).

Example 2.3. Let G = SL2(C). For x 6= 0, π−1
s (X) = {∗}. For x = 0, π−1

s (0) = B = P1(C).

Proposition 2.2. dimFλ = 1
2 codim(Oλ ⊆ N ).

Proposition 2.3. Ñ ∼= T ∗B = {(b, v) ∈ B × g∗ | v ∈ b⊥}

Proof. Let κ : g× g→ C be the killing form. By Cartan’s 2nd criterion, κ is non-degenerate. Fix
a Cartan subalgebra h ⊆ b, consider g = n− ⊕ h⊕ n+. Since κ|h×h is non-degenerate, κ|n−×n+ is

also a non-degenerate pairing. b⊥ ⊆ g∗ corresponds to n+ and hence

T ∗B = {(b, x) ∈ B × g | x is nilpotent}
= {(b, x) ∈ B ×N | x ∈ b}

= Ñ .

�

2.3. Steinberg variety. Let X =
⋃
λ∈ΛXλ be stratified variety (for example N =

⋃
λ∈ΛOλ).

Definition. The conormal space is T ∗ΛX =
⋃
λ∈Λ T

∗
λX ⊆ T ∗X where T ∗λX = {(x, ξ) ∈ Xλ×T ∗xX |

ξ vanishes on TXλ}

Example 2.4. Consider C = C× ∪ {0}. Then

T ∗0 = C = {(0, y) ∈ C2}
T ∗x = {(x, 0) ∈ C2} for x 6= 0.

Hence T ∗ΛC = {(x, y) ∈ C2 | xy = 0}.

Proposition 2.4. (1) T ∗ΛX is a closed subvariety of X;
(2) dimT ∗λX = dimXλ + codim(Xλ ⊆ X) = dimX;
(3) Irreducible components of T ∗ΛX are in bijection with Λ.

Remark. Intersection pattern of T ∗ΛX is hard.

Definition. Let H be a group which acts on varieties X and Y on the left and right respectively.
The balanced product is

X ×H Y = X × Y/((xh, y) ∼ (x, hy)).

Remark. X ×H Y is not always a variety, but for our cases of interest it will be.
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Fix a Borel B ⊆ G, so B = G/B. Consider

G×B G/B ∼= G/B ×G/B
(g, g′B) 7→ (gg′B, g′B).

The set of G-orbits on G ×B G/B is equal to the set of B-orbits on G/B. Therefore, the set of
B-orbits are parametrized by the Weyl group W by the Bruhat decomposition, i.e.,

B × B =
⊔
x∈W

Ox.

Definition. The Steinberg variety is

St = {(b, b′, x) ∈ B × B ×N | x ∈ b ∩ b′}.

In other words, St is the fiber product

St Ñ

Ñ N

.

Now by Proposition 2.3, we have

St ⊆ T ∗B × T ∗B ∼= T ∗(B × B)

((x1, b1), (x2, b2)) 7→ (x1, b1,−x2, b2).

Proposition 2.5. St =
⋃

(b1,b2) T
∗
Ox,(b1,b2)(B × B) =

⋃
(b1,b2)(T(b1,b2)Ox)⊥.

Corollary 2.1. St =
⊔
w∈W T ∗Ow(B × B) is a conormal space.

3. Kazhdan-Lusztig I - Alex Bauman

3.1. Convolution algebras. Let X1, X2 be varieties over k. A correspondence from X1 to X2 is
a closed immersion

Z12 X1 ×k X2 X1

X1

p12
2

p12
1

.

Correspondences induce maps on cohomology:

H∗(X1)→ H∗(X2)

c 7→ p12
2,∗((p

12,∗
1 c) ∪ [Z12]).

More generally, we get

H∗(X1)⊗H∗(Z12)→ H∗(X2)

(c⊗ d) 7→ p12
2,∗(p

12,∗
1 c ∪ d).

Suppose X3 is another variety, Z23 ⊆ X2 ×X3, set

Z12 ◦ Z23 = Z13 = {(z1, z3) ∈ Z1×Z3
| ∃z2 ∈ Z2 s.t. (z1, z2) ∈ Z1 × Z2, (z2, z3) ∈ Z2 × Z3}.

The convolution product in homology is

H(Z12)×H(Z23)→ H(Z12)

(c12, c23) 7→ p13,∗(p
∗
12c12 ∩ p∗23c23).
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We have factorization

H(X1)⊗H(Z12)⊗H(Z23) H(X3)

H(X1)⊗H(Z12)

.

Example 3.1. (1) For X = X1 = X2 = X3 finite set, Zij = X×X, we can identify H(X×X)
as functions X ×X → k. The product is given by

(f ∗ g)(x, y) =
∑
z∈X

f(x, z)g(z, y).

One sees that H(X ×X) ∼= M∗X(k) and the product is matrix multiplication.

(2) Say X̃ is smooth with X̃ → X is proper. For X1 = X2 = X3 = X̃, Zij = X̃ ×X X̃ ⊆
X̃ ×k X̃. Then H(X̃ × X̃) has a ring structure.

3.2. Equivariant Grothendieck group. Let G be an algebraic group action on some variety
X, both defined over k. Then we have

G×X X

X

p2

σ ,

G×G×X X

G

p23

m .

An equivariant sheaf is a sheaf F on X together with an isomorphism

ϕ : σ∗F → p∗2F

such that (p∗23ϕ) ◦ (id× σ)∗ϕ = (m× id)∗ϕ.

Example 3.2. If G is affine, G-action on X is trivial, then equivariant sheaf is just a sheaf of
O[G] = OX ⊗OG-modules.

Definition. We define the K-group of G-equivariant coherent sheaves on X as

KG(X) :=
Z{[F ] | F = coherent equivariant sheaf on Z}

{[G]− [F ]− [H] | ∃ SES F → G → H of G-sheaves}
.

Remark. KG behaves steadily to Borel-Moore homology, so KG is equipped with a convolution
algebra structure.

Remark. G-equivariant sheaves are the same as sheaves on the quotient stack [X/G].

3.3. Kazhdan-Lusztig isomorphism. Let F be a local field and G/F split reductive group over
F . Let I ⊆ G(F ) be the Iwahori. Recall that the Iwahori-Matsumoto extended Hecke algebra
Hext is an algebra over Z[v±1] with

Hext ⊗Z[v±1],v 7→q
1
2
C = H(I\G(F )/I,C).

Theorem 3.1 (Kazhdan-Lusztig). There is a commutative diagram

Hext KĜ×Gm(St)

Z[Wext] KĜ[St]

v=1

∼

forgetful .

where the action of Ĝ×Gm is giving by adjoint action and scaling in N .
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Remark. Consider the diagonal Ñ ⊆ St = Ñ ×N Ñ . Using Ñ ∼= T ∗B, we have KĜ×Gm(Ñ ) =

KĜ×Gm(B) = KB̂×Gm(∗) = Rep(B̂)⊗Rep(Gm) = Z[X∨]⊗ Z[v±1] ∼= RT . So we have Z[v±1][X∨]

sitting inside Hext. Moreover, KĜ×Gm(∗) = (KB̂×Gm(∗))Wfin = (Z[v±1][X∨])Wfin gives the Bern-
stein center.

4. Kazhdan-Lusztig II - Calvin Yost-Wolff

4.1. Recap.

• Alex introduced the convolution product. In particular, form the commutative diagram

Ñ1 ×N Ñ2 ×N Ñ3

Ñ1 ×N Ñ2 Ñ1 ×N Ñ3 Ñ2 ×N Ñ3

p12
p13

p23

we get the convolution product given by

F12 ∗ F23 = p13,∗(p
∗
12F12 ⊗ p∗23F23).

• Let Z = Ñ1 ×N Ñ2, then there is an action KG×Gm(Z) y KG×Gm(Ñ) given by

F · G = p1,∗(F ⊗ p∗2G).

There are also two questions remain.

• What equivariant sheaves correspond to which elements in KG×Gm(St)?
• What is a the approach to Kazhdan-Lusztig isomorphism.

Example 4.1. We have isomorphisms

KG(Ñ) KG(G/B) KB(∗) = C[X]

eλ G×B λ := L(λ) λ

.

Another way to is this is via localization. For nice T ⊆ G y X, KG(X) = [KT (X)]Wfin . For
X = G/B, XT = {wB/B | w ∈ Wfin}. λ should correspond a equivariant vector bundle whose
fiber at wB/B is λw.

These L(λ)’s are well-understood and important later. Let s be a simple transposition and α
be the corresponding root. Let πs : G/B → G/Ps be the natural projection. Then we have the
following ”Weyl character formula” type of formula

π∗sπs,∗e
λ =

eλ+α
2 − es(λ)−α2

e
α
2 − e−α2

.

4.2. Strategy for understanding Kazhdan-Lusztig isomorphism.

(1) On the Bernstein generators of H, define a map to KG×Gm(St)
• finite part: Ts 7→ Qs (to be defined later),

• lattice part: θλ 7→ Oλ = pull-back of O(λ) along T ∗B diag−−→ St.
(2) Define the anti-spherical module M of H and study HyM .

(3) Study the action KG×Gm(Z) y KG×Gm(Ñ).
(4) Match the actions above at the level of generators introduced in (1). Since both actions

are faithful, this implies the Kazhdan-Lusztig isomorphism.

7
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4.3. Anti-spherical module. To prove Kazhdan-Lusztig isomorphism, we are going to show
that KG×Gm(Z) y KG×Gm(Ñ ) = Z[v, v−1][X] realize an action of Iwahori Hecke algebra on
Z[v, v−1][X].

Recall that Elad defined

H := Z[v, v−1][{Ts}, {θλ}]/ ∼
where the relation ∼ consists of

• quadratic relation: (Ts + v)(Ts − v−1) = 0,

• BZ relation: Tsθλ − θs(λ)Ts = (v − v−1)
(
θλ−θs(λ)

1−θ−α

)
.

Recall the sign representation Hfin y Z[v, v−1] where all Ts acts as v−1. The anti-spherical module
is M := H ⊗Hfin

Z[v, v−1] equipped with H-action via the first factor. M has a Z[v, v−1]-basis
given by θλ ⊗ 1 =: [θλ]. Then these [θλ]’s satisfy the relation

• θµ · [θλ] = [θλ+µ], and

• (from BZ relation) (Ts + v)[θλ] = (v[θ−α]− v−1)
(

[θλ]−[θs(λ)]

1−[θ−α]

)
.

Moreover, M is a faithful H-module.

4.4. Explicit computation of KG×Gm(Z) y KG×Gm(Ñ).

Example 4.2. Let first look at the case where G = SL2. Recall from Alex’s talk that we have
Z = T ∗P1 ∪ (P1 × P1\∆). The diagonal part is easy to handle:

eµ∆ · e
λ = eµ+λ.

The complement is more difficult. Let’s compute the action of Qs = OP1×P1(−2, 0) = p∗1ΩP1/∗
where p1, p2 are the projections:

P1 × P1 P1

P1 {∗}

p2

p1 π

π

.

We want to compute p1,∗(Qs ⊗ p∗2eλ):

p1,∗(Qs ⊗ p∗2eλ) = [ΩP1 ]⊗ p1,∗p
∗
2(eλ) (projection formula)

= [ΩP1 ] ·
(
eλ+α

2 − e−λ−α2
e
α
2 − e−α2

)
(base change formula).

Now use the following fact: let π : E → X be a vector bundle, F a quasi-coherent sheaf on X, G
be a free sheaf on X and i : X → E be the zero section. Then we have

i∗F ⊗ π∗G = i∗(F ⊗ G).

Apply this fact to Ñ × Ñ → P1 × P1. We get [i∗ΩP1 ] = (e−α − v−2 · e0) via Koszul resolution.
Therefore, we get

(Ts + v) = v ·Qs.

Now let’s generalize this method. For general G, the components of Z for simple transposition
pairs

Ōs G/B

G/B G/Ps

p1 πs

πs

q←−
Z̃s Ñs

Ñs T ∗G/Ps
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where Ñs = {(e,B) | e ∈ unipotent radical of π(B)}, Ōs ⊆ B×B is the G-orbit consisting of pairs
of flags in relative position s. As earlier in the case of SL2, the same trick implies a similar result
for Qs = q∗ΩŌs/B:

p1,∗(Qs ⊗ p∗2O(λ)) =

(
eλ − es(λ)−α

1− e−α

)
[i∗OÑs(−α)]

where i : Ñs ↪→ Ñ is the inclusion. Again, one needs to express [i∗OÑs(−α)] ∈ KG×Gm(Ñ ) in the
basis of line bundles. This can be done using a Koszul resolution for the short exact sequence of
B-modules

0→ ps/b→ g/g→ g/ps → 0.

4.5. Completing the proof. There are two things remained to be showed:

(1) Qs and eλ∆ generate KG×Gm(Z), and

(2) the action KG×Gm(Z) y KG×Gm(Ñ) is faithful.

We already have the lower bound of dimKG×Gm (Ñ)K
G×Gm(Z) is equal to |Wfin|. Let’s compute

the upper bound. There are two ways to get upper bound.

(1) Localization. We can embedKG×Gm(Z) ↪→ (KT×Gm(ZT×Gm))W with ZT×Gm = {0, w1B/B,w2B/B}.
(2) Something like MV sequence?

5. A crash course on derived categories and perverse sheaves - Robert Cass

5.1. Derived functors. Let A be an abelian category. Many functors of abelian categories don’t
preserve exact sequences.

Example 5.1. Let A = Sh(X,R), the global section functor Γ(X,−) is left exact but not exact.

Derived functors remedy the failure of exactness. For example, we can set Γ(X,−) = H0(X,−)
and define a sequence of functors Hi(X,−). Then short exact sequence

0→ A→ B → C → 0

gives rise to long exact sequence

· · · Hi(X,A) Hi(X,B) Hi(X,C)

Hi+1(X,A) Hi+1(X,B) Hi+1(X,C) · · ·
∂

.

For now, derived functor is viewed as a sequence of functors. To study perverse sheaves, we
would like to package the sequence into one single functor.

From now on, we will assume A is a Grothendieck abelian category. Let Ch+(A) be the category
of bounded below chain complexes. A quasi-isomorphism is a chain map f : C• → D• such that
it induces isomorphisms Hi(C•) ∼= Hi(D•).

The derived category D+(A) is the localization of Ch+(A) at quasi-isomorphisms. In particular,
there is a map Ch+(A) → D+(A) which is universal for the maps in which quasi-isomorphisms
are sent to isomorphisms.

If C•, D• happen to chain complex of injective objects, then

HomD+(A)(C•, D•) = HomK+(Inj(A))(C•, D•).

where the maps of chain complexes are taken up to homotopy.
If F : A → A′ is left exact, there is a derived functor RF : D+(A)→ D+(A′) such that

Hi(RF (C•)) = RiF (C•).

9
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RF is characterized by the following diagram:

Ch+(A) Ch+(A′)

D+(A) D+(A′)

q

F

q′

RF

where ”⇒” is a natrual transformation q′ ◦ F ⇒ RF ◦ q.
D+(A) is triangulated, i.e., there is an auto-equivalence [1] given by (C•[1])i = Ci+1. There is

also a notion of exact triangles. If M1 → M2 → M3 is exact in D+(A), then we get long exact
sequence of Hi(Mj)’s.

5.2. Perverse sheaves. Let X be a scheme of finite type over a field k. Fix a prime l 6= char(k).
Let Sh(X) := Shét(X, Q̄l).

There is a nice class of sheaves called local system. These are sheaves L ∈ Sh(X) such that there
exists an étale cover f : Y → X for which f∗L is the sheaf associated to a constant Q̄l-vector
space of finite dimension.

A sheaf F ∈ Sh(X) is constructible if there exists a finite stratification of X =
⊔
Xi with Xi

locally closed such that F|Xi is a local system.
Let f : X → Y be a map of schemes. Then there are adjoint functors

Sh(X)
f∗−→
f∗

Sh(Y ).

f∗ is exact, while f∗ is only left exact. Let Db(X) be the bounded derived category of constructible
sheaves. Therefore, we get derived functors

Db(Y )
Rf∗−−→
f∗

Db(X)

Db(X)
f !

−−→
Rf!

Db(Y ).

We also have a derived ⊗ and Hom.
For f : X → Spec k. The dualizing sheaf is ωX = f !Q̄l. Then we have the Verdier duality

D : Db(X)→ Db(X),

F 7→ RHom(F , ωX).

If X is smooth, and L is a local system on X. Then L[dimX] ∈ Db(X) is an example of a
perverse sheaf.

Define three subcategories of Db(X).

• pDb(X)≤0 consists of all F ∈ Db(X) such that there exists a stratification X =
⊔
Xi with

Hn(F|Xi) =

{
0 if n > − dimXi,

a local system if n ≤ −dimXi.

• pDb(X)≥0 consists of all F ∈ Db(X) such that D(F) ∈ pDb(X)≤0.
• Perv(X) is the intersection of pDb(X)≥0 and pDb(X)≤0.

Perv(X) is an abelian category (heart of t-structure). Objects in Perv(X) have finite length.
There is a cohomology function

pHi(−) : Db(X)→ Perv(X)

sending exact triangles to long exact triangles.

10
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5.3. Classification of irreducible perverse sheaves. Suppose j : X → Y is a locally closed
immersion. The intermediate extension is

j!∗ : Perv(X)→ Perv(Y )

F 7→ Im(pH0(Rj!(F))→ pH0(Rj∗(F))).

If F is simple, j!∗ is simple (as perverse sheaf). If j is a closed immersion, then j∗ = j! = j!∗.

Theorem 5.1. Every simple perverse sheaf F on X is of the form j!∗(L[dimU ]) for U ⊆ X
smooth and irreducible and L simple local system on U .

Example 5.2. Let X = P1.

(1) Q̄l[1] is a simple perverse sheaf on P1.
(2) Let i : {0} → P1 be the inclusion. i!∗(Q̄l[0]) = i∗(Q̄l[0]) is simple (constant sheaf supported

on a point).
(3) Let j : A1 → P1. j!∗(Q̄l[1]) ∼= Q̄l[1].
(4) Let L be a local system on A1 which does no extend to a local system on P1. j!∗(L[1]) is

not a local system shifted by 1 because

H−1(i∗∞(j!∗(L[1]))) = 0

but for local system this should be zero (if L is Artin-Schreier because j!∗L[1] = j!L[1]).

6. Geometric Satake equivalence - Robert Cass

6.1. Equivariant perverse sheaves. Let k = k̄ and l a prime not equal to char(k). Assume
that an affine algebraic k-group G acts on X of finite type, satisfying the following assumptions:

(1) there are finitely many orbits;
(2) The stabilizers are connected.

F ∈ Perv(X) is G-equivariant if

p∗F ∼= π∗F ,
where p : G×X → X is the projection the second factor and π : G×X → X is the action map.
The category PervG(X) ⊆ Perv(X) of G-equivariant perverse sheaves is a full abelian subcategory
stable under subquotient.

The simple objects in PervG(X) can be constructed as follows. Take j : U ↪→ X to be a G-orbit.
Let

ICU := j!∗Q̄l[dimU ].

6.2. Derived equivariant sheaves. Let DG(X) be the bounded, constructible equivariant de-
rived category. This is not a subcategory of Db(X), but we still has a six-functions formalism for
G-equivariant X → Y . One also has the cohomology functor

pHi(−) : DG(X)→ PervG(X)

that is jointly conservative.

6.3. Geometric Satake equivalence.

6.3.1. Classical Satake isomorphism. Let F be a finite extension of Qp or Fp((t)). Let G be a split
connected reductive group. Let O = OF be the ring of integers of F .

The classical Satake isomorphism is an isomorphism

H(G(F ) �G(O))
∼−→ K(RepQ̄l(Ĝ)) = KĜ(Spec Q̄l).

11
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6.3.2. Geometric Satake equivalence. The geometric Satake equivalence is an equivalence of cate-
gories whose ”sheaf-to-function” dictionary recovers the classical Satake equivalence.

PervL+G(G) Pervalg

Q̄l
(Ĝ)

H(G(F ) �G(O)) K(Repalg

Q̄l
(Ĝ))

K

∼

K .

6.3.3. Loop groups. Let k = F̄q, F = F̄q((t)), O = F̄q[[t]]. Define the following functors on k-
algebras

k-alg→ Sets

LG : R 7→ G(R((t))),

L+G : R 7→ G(R[[t]]).

Then the affine Grassmannian Gr = LG/L+G is equipped with L+-action.
Gr is ind-projective, i.e., increasing union of projective k-schemes. L+G is a group scheme.

Therefore we can study PervL+G(Gr).
First we study the orbit of L+G action on Gr. Let T ⊆ B be a maximal torus in a Borel B.

µ ∈ X∗(T ) is dominant if 〈α.µ〉 ≥ 0 for any positive roots. Let X∗(T )+ be the set of dominant
cocharacters.

The Cartan decomposition writes

G(F ) =
⋃

µ∈X∗(T )+

G(O) · µ(t) ·G(O).

L+G-orbits in Gr are indexed by X∗(T )+. The orbit Grµ is smooth and finite-dimensional. It
turns out that

Ḡr
µ

= Gr≤µ =
⊔
ν≤µ

Grν .

let jµ : Gr≤µ → Gr be the natural embedding. Then

ICµ = (jµ)!∗Q̄l[dim Gr≤µ]

exhaust the simple objects.

6.3.4. Convoltuion. Consider

Gr×Gr
(quotient×id)←−−−−−−−− LG×Gr

q−→ LG×L
+G Gr

m−→ Gr.

Let p1, p2 : Gr×Gr→ Gr be the projection on the i-th factor. For F1,F2 ∈ PervL+G(Gr), define

F1 � F2 = p∗1F1 ⊗ p∗2F2.

There is a unique F1�̃F2 ∈ PervL+G(LG×L+G Gr) such that

q∗(F1�̃F2) ∼= p∗(F1 � F2).

We define

F1 ∗ F2 = m!(F1�̃F2).

Proposition 6.1. (1) F1 ∗ F2 is perverse (semi-small, nearby cycles, etc);
(2) This is symmetric, i.e., there are natural maps F1 ∗ F2

∼= F2 ∗ F1.

12
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(3) The global section functor⊕
i

RΓi(−) : PervL+G(Gr)→ VectQ̄l

is exact, faithful ⊗-functor that fits into the commutative diagram

PervL+G(G) Repalg

Q̄l
(Ĝ)

VectQ̄l

Satake

⊕
RiΓ

forgetful

.

6.3.5. Simple objects. The category PervL+G(Gr) is Tannakian. Therefore the Tannakian formal-
ism implies

PervL+G(Gr) ∼= Repalg

Q̄l
(H)

for some algebraic group H over Q̄l.
Let T̂ ⊆ Ĝ be the dual torus, V ∈ Repalg

Q̄l
(Ĝ),

V =
⊕

µ∈X∗(T̂ )

Vµ.

FOr each µ ∈ X∗(T ) ∼= X∗(T̂ ), there is a unique simple Ĝ representation L(µ) of highest weight
µ such that

dimL(µ)µ = 1

L(µ)ν = 0 unless ν ≤ mu.
Under the geometric Satake equivalence,

ICµ 7→ L(µ).

7. Gaitsgory’s central sheaves - Sean Cotner

7.1. Introduction. Let k be an algebraically closed field and G a connected reductive group over
k. Let T ⊆ B be a Borel-torus pair. Let K = k((t)),O = k[[t]] and I ⊆ G(O) be the Iwahori
subgroup.

Last time we talked about the geometric Satake equivalence

PervL+G(G) Pervalg

Q̄l
(Ĝ)

H(G(F ) �G(O)) K(Repalg

Q̄l
(Ĝ)).

K

∼

K

Today we will geometrize Bernstein’s description of Z(Haff).

Theorem 7.1 (Bernstein). Z(Haff) ∼= C[X∗(T )]Wf ∼= C⊗Z K(Rep Ĝ).

Let Gr = G(K)/G(O) and Fl = G(K)/I. Then

Haff = Functs
I (Fl ,C),Hsph FunG(O) = Funss

G(O)(Gr,C).

In the classical setting, there is a commutative diagram

Z(Haff) C⊗Z K(Repalg

Q̄l
(Ĝ))

Hsph

∫
G(O)/I

pullbackZ

13
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We want to geometrize this picture. We have seen the geometrization

Hsph  PervG(O)(Gr)

Haff → PervI(Fl).

So the question is to geometrize the center.

Theorem 7.2 (Gaitsgory). There exists a central functor

Z : PervG(O)(Gr)→ PervI(Fl)

such that

Db
I(Fl) Db

I(Gr)

PervG(O)(Gr)

π∗

Z
forgetful

and Z induces the data of natural isomorphisms

Z(A) ∗I F ∼= F ∗I Z(A).

7.2. Variants on a theme. LG(R) = G(Rt), L+G(R) = G(R[[t]]), Gr = LG/L+G, DR =
SpecR[[x]] and D◦R = SpecR((x)).

Proposition 7.1. Gr(R) = {(ξ.β) | ξ is a G-torsor on DR, β : ξ|D◦R ∼= ξ0 is a trivializtion}.

Proposition 7.2. Choose x ∈ C(R), let C0 = C − {x}, then

Gr(R) = {(ξ.β) | ξ is a G-torsor on CR, β : ξ|C0
R

∼= ξ0 is a trivializtion}

Remark (Beauville-Laszlo). A pair (ξ, β) on DR can be glued to ξ◦C◦R
to globalize.

7.2.1. Variant A. Let x move.

GrG,C(R) = {(ξ.β, x) | x ∈ C(R), ξ is a G-torsor on CR, β : ξ|D◦R−{x}
∼= ξ0|CR−{x} is a trivializtion}.

7.2.2. Variant B. Allow several points.

GrG,C(R) = {(ξ.β, x) | x ∈ Cn(R), ξ is a G-torsor on CR, β : ξ|D◦R−Γx
∼= ξ0|CR−Γx is a trivializtion}.

Remark. When n = 2,

GrG,C2 |C2−∆C
∼= GrG,C ×GrG,C,C2−∆C

,GrG,C2 |∆C
∼= GrG,C .

But what about semi-continuity of fibber dimension?

Gr
≤λ ×Gr

≤µ ≤ Ḡr
≤λ+µ

, LG×̃Gr = Gr ×̃Gr .

Proposition 7.3.

(Gr ×̃Gr)(R) = {(ξi, βi, x) | x ∈ C(R), ξi are G-torsors on CR, β : ξi|D◦R−{0}
∼= ξi+1|CR−{0} is a trivializtion}

(GrG,C ×̃Gr)G,C(R) = {(ξi, βi, x) | x ∈ C(R), ξi are G-torsors on CR, β : ξi|D◦R−{xi}
∼= ξi+1|CR−{xi} is a trivializtion}.

There is a natural map

µ : GrG,C ×̃GrG,C ∼= GrG,C2

(ξi, βi, xi) 7→ (ξ2|CR−Γx
β1◦β2−−−−→ ξCR−Γx , x1, x2).

14
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7.2.3. Variant 3. Let G move. Let I be the Iwahori group scheme over O = k[[t]] defined for flat
O-algebras R by

I(R) = preimage of B(R(t)) under G(R)→ G(R(t)).

Proposition 7.4. There exist a unique smooth affine group scheme G over C such that

• G|C0 = GC0 ;
• G|Ĉ0

= I.

Define the Gaitsgory’s family

GrG,C(R) = {(ξ.β, x) | x ∈ C(R), ξ is a G-torsor on CR, β : ξ|C◦R ∼= ξ0|C◦R is a trivializtion}.

Remark. GrG,C |C0 ∼= GrG,C0 ∼= GrG×C0 and GrG,C |0 = FlG

7.3. Nearby cycles. Let X be a complex scheme and f : X → C be an algebraic functor. Let

X0 = f−1(0), X× = f−1(C×).

Consider the commutative diagram

X0 X X× X̃

0 C C0 C.

i

f0 f

j

f×

expX

exp

We want some degenerate sheaves Perv(X×) → Perv(X0). Define the nearby cycles functor
associated to f by

Ψf : Perv(X×)→ Perv(X0)

F 7→ i∗j∗(expX)∗(expX)∗F [−1].

Theorem 7.3. (1) For F ∈ Db
c(X

×), Ψf (F) ∈ Db
c(X0).

(2) Ψf is perverse t-exact.
(3) Ψ commutes with proper push forwards, smooth pullback, Verdier duality and box product.
(4) If J is a smooth affine group scheme, then Ψf upgrades to

DJC0 (X×)→ DJC0 (X0).

7.4. Construction of Gaitsgory’s functor. Let C = C. Gaitsgory consider the ind-scheme
GrG,C which has the property

GrG,C× = GrG×C×,GrG,C0 = FlG.

Then he defines the functor

Z : Db(G(O)\G(K)/G(O))→ Db(I\G(K)/I)

F 7→ Ψ(p∗F [1])

where p : GrG,C× → GrG is the projection and Ψ is the nearby cycle functor associated with the
sturcture map GrG,C → C.

Theorem 7.4 (Gaitsgory). (1) The functor Z is monoidal (with respect to ∗I and ∗G(O))
and perverse t-exact.

(2) For F ∈ Db(G(O)\G(K)/G(O)) and G ∈ Db(I\G(K)/I) there is a canonical isomorphism

Z(F) ∗I G ∼= G ∗I Z(F ).

(3) For any F ∈ Db(G(O)\G(K)/G(O)), there is a canonical isomorphism π∗ ◦ Z(F) ∼= F .
(4) For any F ∈ Db(G(O)\G(K)/G(O)), the monodromy automorphism of Z(F) is unipotent.
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8. Classical Whittaker models - Elad Zelingher

8.1. Whittaker models. Let F be a local field or a finite field. Take ψ : F → C× be a non-trivial
continuous additive character. Define a new character

ψ : Un → C×

1 x1 ∗ · · · ∗
1 x2 · · · ∗

. . .
. . . ∗
. . . xn−1

1

 7→ ψ(x1 + · · ·xn−1).

Let π be an admissible representation of GLn(F ). A ψ-Whittaker functional for π is a non-zero
element of HomUn(ResUn π, ψ). If π admits such functionals, π is called generic.

A well-known result of Gelfand-Graev, Gelfand-Kazhdan and Shalika says that if π is irreducible
and generic, then its ψ-Whittaker functional is unique up to scalar. We call π with the property
that π is generic and has a unique ψ-Whittaker functional a representation of Whittaker type. All
these notions do not depend on ψ for G = GLn.

Proposition 8.1 (Rodier). If π1, π2, · · · , πr are admissible representations of Whittaker type,
then the parabolic induction of

π = π1 × · · · × πr
is of Whittaker type.

If π is irreducible generic, then it is of Whittaker type. By Frobenius reciprocity implies

HomUn(ResUn π, ψ) ∼= HomGLn(F )(π, Ind
GLn(F )
Un

ψ)

have dimension 1. Therefore, there exists a unique subspace denoted by W (π, ψ) of Ind
GLn(F )
Un

ψ
which is isomorphic to π. This space W (π, ψ) is called the ψ-Whittaker model of π.

Why should one care about Whittaker models?

(1) They appear in a ”Fourier expansion” cusp forms. Using this one can show:
(a) Weak multiplicity one results: the space of cusp forms on [GLn] is multiplicity free.
(b) Strong multiplicity one results: if π and π′ are irreducible cuspidal automorphic

representations such that πv ∼= π′v away from a finite set of places, the π ∼= π′.
(2) Many integral representations of L-functions rely on the Whittaker model.
(3) Generic representations help one to index the L-packets that show up in the local Lang-

lands correspondence. If G is a reductive group and Π is an L-packet of G, we require
the unique generic element of Π to corresponds to the trivial character of the centralizer
of the parameter of Π.

Example 8.1. (1) Irreducible supercuspidal representations of GLn(F ) are generic.
(2) Unramified principal series

π = | · |s1 × · · · × | · |sn

are generic (of Whittaker type).

8.2. Casselman-Shalika formula. Let π = | · |s1 ×· · ·× | · |sn . Recall that π is irreducible if and
only if q−si 6= q−sj−1 for any i, j. Recall that π consists of functions f : GLn(F )→ C such that

f


t1 ∗ ∗

. . . ∗
tn

 g

 = δ
− 1

2

Bn


t1 . . .

tn


 |t1|s1 · · · |tn|snf(g).
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A flat section for the family of representations π is a function f such that its restriction to GLn(O)
does not depend on s1, · · · , sn. More precisely, a flat section is a function

f : (s, g) 7→ f (s)(g)

such that

• f (s)(g) ∈ πs for any s = (s1, · · · , sn);
• (s, k) 7→ f (s)(k) does not depend on s for k ∈ GLn(O).

Consider the integral

ls(f
(s)) =

∫
Un

f (s)(wnu)ψ−1(u)du

where wn is the longest element of the Weyl group. If ls(f
(s)) converges, it defines a ψ-Whittaker

functional (or the zero functional). It turns out that ls(f
(s)) converges absolutely if s lies in

a positive cone. It converges in this cone to a meromorphic function (rational functiion in
q−s1 , · · · , q−sn). Therefore, ls(f

(s)) has an interpretation for every s in the domain of defini-
tion of this rational function.
πs is spherical with its unique spherical function is given by

f
(s)
0 (bk) = δ

1
2

Bn
(b)|t1|s1 · · · |tn|s

n

.

It turns out that

ls(f
(s)
0 ) =

∏
1≤i,j≤n

(1− q−si+sj−1) = det(IMn(C) −Ad

 q−s1

. . .
q−sn

 q1)

=
1

L(1, πs,Ad)
.

Notice that it has zero exactly if q−si+sj−1 = 1 for sone i and j, or equivalently when πs is not
irreducible.

Let

W s
0 (g) =

ls(πs(g))f
(s)
0

ls(f
(s)
0 )

so W s
0 is a spherical vector, i.e.,

W s
0 (g) = W s

0 (gk), ∀g ∈ GLn(F ), k ∈ GLn(O).

We have W0(IMn(C)) = 1.
Recall that we have the Iwasawa decomposition

GLn(F ) = UnAn($) GLn(O).

We then have

W s
0 (uak) = ψ(u)W s

0 (a).

So it suffices to show that

W s
0 (a) = W s

0

((
$m1

. . .
$mn

))
6= 0.

Because the center F× acts by the central character, we may assume m1 ≥ m2 ≥ · · · ≥ mn ≥ 0,
so that m = (m1,m2, · · · ,mn) is a partition. Let

$m =

$
m1

. . .

$mn

 ∈ A($).
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Theorem 8.1 (Shintani, Casselman-Shalika).

W s
0 ($m) = δ

1
2

Bn
($m) · Sm(q−s1 , · · · , q−sn)

where Sm is the Schur polynomial corresponding to m.

9. Geometric Whittaker models - Pam Gu

9.1. Categorification of Whittaker models. Let G be a split reductive group defined over
F̄p. Let B be a Borel with unipotent radical U and U− ⊆ B− the opposite unipotent radical in
the opposite Borel. Let π be a representation of G. Fix ψ : U− → C be a nontrivial additive
character.

Consider the cases when Vπ = Fun(X,C) where X is a G-space. We categorify the Whittaker
model W (π, ψ) when π is of Whittaker type.

Step 1. Categorify ψ.
Recall that we have C/Z → C×, z 7→ e2πiz and A1/Fp → A1 through the Artin-Schreier cover

a : x 7→ xp − x. Moreover we have

a∗(Q̄l) =
⊕

ψ′:Fp→C×
Lψ.

Here Lψ is the Artin-Schreier sheaf which corresponds to ψ under the sheaf-to-function correspon-
dence. We define a map p by the diagram

U−

U−[U−, U−]
∏
α∈∆ Ga,α Ga.

p

∼ ∑
Let L = p∗Lψ.

Step 2. let U− y X by multiplication. A (U−,L)-equivariant complex on X is a pair (F , β)
where F ∈ Db

c(X) and

β : m∗F ∼= L ⊗ F

is an isomorphism satisfying the usual cocycle condition.
Let D(U−.L)(X) be the category of (U−,L)-equivariant complexes on X. Morphisms in this

cateogry are morphisms ini Db
c(X) which commute with β.

We can define averaging functors

Db
c(X) D(U−.L)(X)

AvL!

AvL∗

by

AvL! := m∗(L ⊗−)[dimU−],

AvL∗ := m!(L ⊗−)[dimU−].

One can imagine these functors as smearing and integrating sheaf over the U−-orbits to make it
equivariant. The forgetful functor D(U−,L)(X)→ Db

c(X) is fully faithful.
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9.2. Iwahori-Whittaker category, anti-spherical category and the averaging functor
between them. Let I− ⊆ L+G be the iwahori subgroup corresponding to B−, I−U ⊆ I− be the
pro-unipotent radical in the unipotent radical of I−. Let Fl be the corresponding flag variety. Let
UK and U−K be the unipotent radical and opposite unipotent radical of L+G. Let ψ : U−K → C be
an additive character.

Recall that the anti-spherical module is

M ∼= H⊗Hfin
Z[v, v−1]

where H = Z[v, v−1][{Ts}, (θλ)] modulo the quadratic and BZ relations and Hfin acts on Z[v, v−1]
by the sign representation. We have a realization

M ∼= W (Fun(Fl ,C), ψ).

We expect a categorification of the realization:

M ∼= DU−K ,L
(Fl).

Issue. U−K -orbits on Fl have neither finite dimension nor finite co-dimension. It is difficult for us
to work with sheaves on ∞-dimensional space.

One solution is to use Drinfeld compactification (Frenkel-Gaitsgory-Vilonen). Here we use
another approach, the Iwahori-Whittaker techniques.

The key idea is to replace U−K by I−U . We have for non-degenerate characters ψ of U−K and ψU
of I−U . It follows from the isomorphism

W (Fun(Fl ,C),C) ∼= WIW (Fun(Fl ,C), ψU ).

that
M ∼= WIW (Fun(Fl ,C), ψn).

The I−U -orbits of Fl are just opposite Bruhat cells. So passing to I−U -orbits resolves the problem
with ∞-dimension orbits.

Using same procedure as before, we have

Db
IW (Fl) = D(I−U ,L)(Fl).

Another realization of anti-spherical module is

M ∼= H/〈bw | w /∈ fW 〉
where bw is the Kazhdan-Lusztig basis and fW is the set of minimal coset representations in
Wfin\W .

The cateogrification of M is given

M = PervI(Fl)/{the Serre subcateogry generated by FlIw, w /∈ fW},
where FlIw is the simple object in the image of the morphism

∆I
w(Q̄l)→ ∇Iw(Q̄l),

∆I
w(Q̄l) (resp. ∇Iw(Q̄l)) is the standard (resp. co-standard) perverse sheaf on Fl .
We have an averaging functor

AvIW : Db
I(Fl)→ Db

IW (Fl).

Theorem 9.1. (1) The functor AvIW is t-exact with respect to the perverse t-structure on
Db
I(Fl) and Db

IW (Fl).
(2) The restriction of this functor to the hearts of t-structures through a fully faithful functor

M → PIW (Fl)

where PIW (Fl) is the heart of t-structure on Db
IW (Fl) and the functor is an equivalence

of cateogry.
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9.3. Iwahori-Whittaker verison of geometric Satake category. There is a Satake equiva-
lence

PervL+G(Gr) ∼= Repalg

Q̄l
(Ĝ).

By Bezrukavnikov-Gaitsgory-Mirkovic-Riche-Rider, there is an equivalence of categories

PervL+G(Gr) ∼= PervIW (Gr)

where PervIW (Gr) is the category of Iwahori-Whittaker perverse sheaves on Gr.
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