
INTRODUCTION TO HECKE ALGEBRAS

ELAD ZELINGHER

Let F be a non-archimedean local field with ring of integers o, maximal ideal p, uniformizer
ϖ ∈ p and residue field Fq. Let G be a split connected algebraic reductive group over F ,
with split maximal torus A and Borel subgroup B = AN . Let K = G (o) be a hyperspecial
maximal open compact subgroup of G. Let W be the Weyl group of G, that is, the normalizer
of A in G modulo A.

Let X∗ (A) denote the cocharacter group

X∗ (A) = Hom (Gm, A) =
{
µ∨ : F× → A | µ∨ algebraic character

}
.

For an element µ∨ ∈ X∗ (A) we denote ϖµ∨
:= µ∨ (ϖ). The map µ 7→ ϖµ∨ defines an

isomorphism
X∗ (A) → A (ϖ) := A/A (o) ,

where A (o) = A ∩ K.

Example 1. When G = GLn,

A =


a1

. . .
an

 | a1, . . . , an ∈ F×


and

X∗ (A) ∼= Zn

by the isomorphism sending

Z ∋ (k1, . . . , kn) 7→ µ∨
(k1,...,kn)

(x) =

xk1

. . .
xkn

 .

In this case,

A (ϖ) = A/A (o) ∼=


ϖk1

. . .
ϖkn

 | k1, . . . , kn ∈ Z

 ,

where

A (o) =


a1

. . .
an

 | a1, . . . , an ∈ o×

 .

It is clear that the map X∗ (A) → A (ϖ) given by (k1, . . . , kn) 7→ µ∨
(k1,...,kn)

(ϖ) is an isomor-
phism.
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For any compact open subgroup K ⊂ G let

H (G � K) = {f ∈ C∞
c (G) | f (kgk′) = f (g) , ∀g ∈ G, k, k′ ∈ K} .

A basis for H (G � K) is given by the characteristic functions {χKgK}g where g runs over all
the representatives of cosets of K\G/K.

The space H (G � K) is an algebra with convolution as multiplication:

(f1 ∗ f2) (g) =
∫
G

f1
(
x−1

)
f2 (xg) dx.

1. Spherical Hecke algebra

Recall the Cartan decomposition: we have that

G =
⋃
·
µ∨

µ∨ is dominant

K ·ϖµ∨ · K.

It follows from applying Gelfand’s trick to an involution based on the Chevalley data, that
H (G � K) is commutative (the involution should act trivially on ϖµ∨ for any µ∨ and send
K to itself).

Example 2. If G = GLn (F ), then µ∨
(k1,...,kn)

is dominant if and only if k1 ≥ k2 ≥ · · · ≥ kn.
The involution in this case is x 7→ tx. In this case, under the isomorphism above, every
dominant cocharacter can be written as a product of the form

ai11 · ai22 · · · · · ainn ,

where i1, . . . , in ∈ Z and i1, . . . , in−1 ≥ 0, and for 1 ≤ j ≤ n,

aj =

(
ϖIj

In−j

)
.

The spherical Hecke algebra H (G � K) can be realized as compactly supported C-valued
functions on A (ϖ), that are invariant under the action of the Weyl group W .

If K ⊂ K is an arbitrary compact open subgroup, then H (G � K) is not commutative
when K ̸= K. However, we have the following relation. If µ∨

1 and µ∨
2 are dominant cochar-

acters then
χ
K·ϖµ∨1 ·K ∗ χ

K·ϖµ∨2 ·K = χ
K·ϖµ∨1 ϖµ∨2 ·K = χ

K·ϖµ∨1 µ∨2 ·K .

Let R+
K be the algebra generated by the elements χK·ϖµ∨ ·K , where µ∨ goes over all the

dominant cocharacters. Then R+
K is a commutative subalgebra of H (G � K). Using the

Cartan decomposition, we may decompose

H (G � K) = H (K � K) ∗R+
K ∗ H (K � K) .

Here, H (K � K) is a finite-dimensional algebra, consisting of functions K → C bi-invariant
under K, and R+

K is abelian. This shows that H (K � K) breaks into two pieces: a small
(finite-dimensional) non-commutative one, and a large (infinite-dimensional) abelian one.

Remark 3. An important feature that we will not discuss is the Jacquet functor. Suppose
that P = MU ⊂ G is a proper parabolic subgroup with Levi part M , and U− is the radical
opposite to U . Suppose that we have a Iwahori-type decomposition[1, Lemma 3.11]

K =
(
K ∩ U−) (K ∩M) (K ∩ U) .
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(for instance, this holds for K = K and K = I from the next section). Let π be an admissible
representation of G. Let

JU (π) = π/spanC {π (u) v − v | v ∈ π, u ∈ U} .

Then the quotient map
π → JU (π)

defines a surjection for the subspaces of K-fixed vectors:

πK → JU (π)K∩M .

This can be used to show that certain representations can be embedded as subrepresentations
of principal series representations. See for example [4, Section 12].

2. Iwahori–Matsumoto hecke algebra

Consider the quotient map
ν : K → G (Fq) .

The inverse image of B (Fq) under this map is called the Iwahori subgroup of G (F ). We
denote it by I. Assume henceforth that the Haar measure is normalized so that I has
measure 1.

Example 4. If G = GLn then

I = ν−1 (B (Fq)) =




o× o o · · · o
p o× o · · · o

p p
. . . . . . ...

...
... . . . o× o

p p · · · p o×




.

Let W̃ = W ⋊ A (ϖ) be the extended affine Weyl group. We have the following Bruhat–
Iwahori decomposition:

G =
⋃
·

x∈W̃

I · x · I.

It follows that {χI·x·I}x∈W̃ forms a basis for H (G � I).
The group W̃ is almost a Coxeter group. It has a well-known standard presentation. In

general,
W̃ = Waff ⋊ π1 (G) ,

where π1 (G) is the fundamental group of G and Waff is the affine Weyl group, generated by
all affine reflections. Waff has a standard presentation as a Coxeter group.

Example 5. When G = GLn, we have that Waff is generated by s1, . . . , sn satisfying the
relations

(1) s2j = 1.
(2) sjsk = sksj if j − k ̸≡ 0,±1 (modn).
(3) sjsj+1sj = sj+1sjsj+1, where j + 1 is taken modulo n.
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We have that π1 (GLn) ∼= Z and that if h ∈ π1 (GLn) is a generator, then for any j

hsjh
−1 = sj+1,

where j + 1 is taken modulo n.
We may choose the following matrices to represent these elements: for 1 ≤ j ≤ n − 1,

choose for sj the permutation matrix that swaps the columns at positions j and j+1. Choose

sn =

 ϖ−1

In−2

ϖ


and

h =


ϖ−1

1
. . .

1

 .

There is a notion of the length of an element in W̃ : since Waff is a Coxeter group, it comes
with a length function ℓ : Waff → Z≥0 and we denote by ℓ : W̃ → Waff → Z≥0 the length
function of W̃ .

Example 6. If G = GLn then any element in W̃ can be written in the form
w = hm · si1 · si2 · · · · · sir ,

where m ∈ Z. We denote by ℓ (w) the minimal r such that w can be written in such form.
Such presentation of w is called a reduced expression.

The elements of H (G � I) corresponding to the generators of W̃ generate H (G � I) as
an algebra. They satisfy the corresponding Hecke algebra relations.

Example 7. If G = GLn, let us define for any w ∈ W̃

fw = χI·w·I .

Then we have the following relations:
(1) fsj ∗ fsj = (q − 1) fsj + q. This can also be written as(

fsj − q
)
∗
(
fsj + 1

)
= 0.

(2) fsj ∗ fsk = fsk ∗ fsj if j − k ̸≡ 0,±1 (modn).
(3) fsj ∗ fsj+1

∗ fsj = fsj+1
∗ fsj ∗ fsj+1

, where j + 1 is taken modulo n.
(4) fh−1 = f−1

h .
(5) fh ∗ fsj ∗ f−1

h = fsj+1
, where j + 1 is taken modulo n.

Remark 8. We may attach to Waff an Iwahori–Matsumoto Hecke algebra Hv (Waff). It is an
algebra over Z [v, v−1]. The Iwahori–Matsumoto Hecke algebra is generated by the generators
Ts for any generator s of Waff and is subject to their relations, where we modify the quadratic
relations s2 = 1 to be

(Ts − v)
(
Ts + v−1

)
= 0,

for every quadratic generator s of Waff . Then Iwahori and Matsumoto proved that if G is
semisimple then H (G � I) is isomorphic to H

q
1
2
(Waff). More generally, we have that

H (K � I) ∼= H
q
1
2
(Waff)
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and that
H (G � I) ∼= H (K � I)⊗

Z
[
q
1
2 ,q−

1
2

] RI ,

by the isomorphism sending
χI·w·I ⊗ f 7→ χI·w·I ∗ f.

See the definition of RI below.

2.1. Bernstein–Zelevinsky relation. Denote for w ∈ W̃ ,

fw = χI·w·I .

Recall that RI is the subalgebra of H (G � I) generated by fϖµ∨ for every dominant cochar-
acter µ∨. If µ∨

1 and µ∨
2 are dominant cocharacters then we have that

ℓ
(
ϖµ∨

1 µ
∨
2

)
= ℓ

(
ϖµ∨

1 ϖµ∨
2

)
= ℓ

(
ϖµ∨

1

)
+ ℓ

(
ϖµ∨

2

)
,

and

(2.1) f
ϖµ∨1

∗ f
ϖµ∨2

= f
ϖµ∨1 ϖµ∨2

= f
ϖµ∨1 µ∨2

.

In particular R+
I is commutative. It can be shown from the relations of the generators of

the Hecke algebra that fw is invertible for any w ∈ W̃ . Let RI be the algebra generated by
fϖµ∨ and f−1

ϖµ∨ for every dominant cocharacter µ∨. It seems tempting to define a map

A (ϖ) → R×
I

by the formula
ϖµ∨ 7→ fϖµ∨ .

However, this map will not be a group homomorphism A (ϖ) → R×
I . This can be fixed as

follows. First let us define a normalization of fw:

Tw = q−
ℓ(w)
2 fw.

If λ∨ is a cocharacter, we can write λ∨ = µ∨
1 · (µ∨

2 )
−1 where µ∨

1 and µ∨
2 are dominant

cocharacters. We define a map

θ : A (ϖ) → R×
I ,

θ (λ∨) = Tµ∨
1
∗
(
Tµ∨

2

)−1
.

This is well defined because of (2.1). This map is now a homomorphism.

Example 9. If G = GLn then if we denote

bj =

Ij−1

ϖ
In−j

 ,

then
bj = aj · a−1

j−1,

and
θ (bj) = Taj ∗

(
Taj−1

)−1
.

One now needs to express aj−1 as a product of h−j and of the generators s1, . . . , sn−1 in
order to be able to write an expression for

(
Taj−1

)−1 as a product of the inverses of the
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corresponding generators. In turn, these inverses are computed using the quadratic relations
of the Hecke algebra.

Theorem 10 (Bernstein–Zelevinsky presentation). Let s be any one of the generators of Waff

(as a Coxeter group). For any cocharacter λ∨ we have that θ (λ∨)− θ (s (λ∨)) is divisible by
1− θ (α∨)−1 in the ring RI and the following equality holds:

θ (λ∨)Ts − Tsθ (s (λ
∨)) = Tsθ (λ

∨)− θ (s (λ∨))Ts

=
(
q

1
2 − q−

1
2

) θ (λ∨)− θ (s (λ∨))

1− θ (α∨)−1 ,

where α∨ is a certain fundamental cocharacter on which s acts by s (α∨) = (α∨)−1.

Example 11. When G = GLn, recall that λ∨ is parameterized by λ∨ = µ∨
(k1,...,kn)

where
k1, . . . , kn ∈ Z. We have that W = ⟨si | 1 ≤ i ≤ n⟩ ∼= Sn acts on λ∨ by permuting the
coordinates (k1, . . . , kn) ∈ Z. In this case, s = sk for some k and

α∨ = α∨
k = (0, 0, . . . , 0,−1, 1, 0, . . . , 0)

is the cocharacter corresponding to the matrix
Ik−1

ϖ−1

ϖ
In−k−1

 ,

so θ (α∨) = Tak−1
∗ Tak+1

∗ T−2
ak

.

2.2. Center of H (G � I). From the Bernstein–Zelevinsky relation, the following descrip-
tion of the center of H (G � I) can be concluded.

Theorem 12. The center of H (G � I) is the subspace of R+
I consisting of elements of the

form ∑
µ∨

aµ∨θ (µ∨)

such that awµ∨ = aµ∨ for every w ∈ W and cocharacter µ∨. In particular, this center is
isomorphic to C [A (ϖ)]W .
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