
INTRODUCTION TO THE LOCAL LANGLANDS CORRESPONDENCE
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1. Automorphic representations

Let F be a global field, for example F = Q or F = Fp (t). Let AF =
∏′

v Fv ⊃ ov, where v
runs over all the completions of v and for all finite v, ov ⊂ Fv is the ring of integers of Fv.
Let G be a connected algebraic reductive group over F. Let π be an irreducible automorphic
representation of

G (AF) =
′∏
v

G (Fv) ⊃ G (ov) .

Then π can be decomposed as a restricted tensor product π =
⊗′

v πv as follows: for any
v, πv is an irreducible admissible representation of G (Fv). For all but finitely many v, the
representation πv is spherical, that is, πv admits a non-zero vector invariant under the action
of the maximal compact open subgroup G (ov). Such vector is called a spherical vector. It is
well-known that for a spherical representation πv, its spherical vector is unique up to scalar
multiplication. A classification of irreducible spherical representations is also well-known.
They are in bijection with conjugacy classes of Ĝ (C). For almost every v, we denote the
conjugacy class of Ĝ (C) corresponding to πv by Sat (πv).

Let R be an algebraic representation of Ĝ (C), i.e., R : Ĝ (C) → GLN (C) is an algebraic
homomorphism where N ≥ 1. The Langlands functoriality conjecture concerns the question
whether there exists an irreducible automorphic representation Π of GLN (AF) such that for
all but finitely many v,

Sat (Πv) = R (Sat (πv))?

One way of approaching this question is by attaching an L-function to the desired auto-
morphic representation Π. We may define for almost every v,

L (s, R, πv) = det
(
1−R (Sat (πv)) q

−s
v

)−1
,

and hence define a partial L-function

LS (s, R, π) =
∏
v/∈S

L (s, R, πv) .

Under certain assumptions on π, it can be shown that LS (s, R, π) absolutely converges for
Res≫ 0. Some questions naturally arise.

(1) Does LS (s, R, π) have a meromorphic continuation to the entire plane? Does it satisfy
a functional equation?

(2) How can we define L (s, R, πv) for v ∈ S?
The first question has been studied case by case for cases of (G,R). The area studying it
is called integral representations of L-functions. Understanding the analytic properties of
LS (s, S, π′) for certain (S, π′) can yield answers to the above functoriality problem. Miao
(Pam) Gu and her collaborators are working on a new case of this problem, where R is a triple
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product of three cuspidal automorphic representations of GL. Their work can potentially
imply an answer to the functoriality problem for the tensor product representation of two
cuspidal automorphic representations.

Answering the first question usually allows one to also answer the second question. How-
ever, the second question has an independent answer using the local Langlands correspon-
dence.

2. Weil–Deligne representations

In the study of algebraic number theory, one defines a local Artin L-factor for a Galois
representation. We may try to borrow this idea here.

Let F be a non-archimedean local field with ring of integers o, maximal ideal p, and
residue field Fq. We define WF to be the following subgroup of the absolute Galois group
Gal (F sep/F ), where F sep is the separable closure of F . Recall that if F unr is the maximal
unramified extension of F then Gal (F unr/F ) is isomorphic to Ẑ, the profinite completion of
Z. We define WF to be the inverse image of Z under the composition

Gal (F sep/F ) → Gal (F unr/F ) → Ẑ.
Then WF fits into the exact sequence

0 // IF //WF
// Z // 0

where IF = Gal (F sep/F unr) is the inertia group, defined as the inverse image of 0 under the
composition above.

Let us equip WF with topology such that IF is open. We have that

WF = ⟨Fr⟩⋉ IF ,

where Fr is an element such that its image under the composition above generates Z. Note
that the choice of Fr is not unique, as for any i ∈ IF , the element Fr ·i also has this property.
Define the norm character |·| : WF → C× by∣∣Frk ·i∣∣ = q−k.

A Weil–Deligne representation is a pair φ = (ρ,N) where (ρ, V ) is a finite dimensional
representation of V and N ∈ End (V ) is a nilpotent such that:

(1) There exists an open subgroup J ⊂ IF such that ρ (J) is trivial.
(2) ρ (Fr ·i) is semisimple for any i ∈ IF .
(3) ρ (w)Nρ (w)−1 = |w| ·N or any w ∈ WF .

If φj = (ρj, Nj) is a Weil–Deligne representation for j = 1, 2, a homomorphism T : φ1 → φ2

is a linear map T : V1 → V2 such that for every w ∈ WF ,

T ◦ ρ1 (w) = ρ2 (w) ◦ T
and

T ◦N1 = N2 ◦ T.
Such T is called an isomorphism if T is an invertible linear map.

For a Weil–Deligne representation as above we may attach a local L-factor as follows. No-
tice thatN fixes the subspace V IF consisting of inertia fixed vectors. Let V IF

N = Ker (N ↾V IF ).
Define

L (s, φ) = det
(
idV −q−sφ (Fr) ↾

V
IF
N

)−1
.
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The L-factor L (s, φ) records the multiplicity of the Weil–Deligne representation (1, 0) in
φ = (ρ,N): it has a pole at s = 0 of order equal to the number of times (1, 0) appears as a
summand of φ = (ρ,N).

The local Langlands conjecture for GLn (F ) is the statement that there exists a bijection
between the following sets

{Semisimple Weil-Deligne representations φ = (ρ,N) of dimension n} /equivalence

and
{Irreducible admissible representations π of GLn (F )} /equivalence.

If π corresponds to φ = (ρ,N), we say that φ is the Langlands parameter of π.
This bijection depends on a choice of a uniformizer ϖ ∈ F and a Frobenius Fr ∈ WF . It

should satisfy the following properties.
(1) For n = 1 it is given by local class field theory via the realization

F× ∼= Wab
F = WF/ [WF ,WF ] .

(2) Duals: if φ corresponds to π then the dual φ∨ corresponds to π∨.
(3) Central characters: if φ corresponds to π then detφ corresponds to ωπ, where ωπ is

the central character of π.
(4) Twisting by characters: if φ corresponds to π and ω is a character of WF that

corresponds to α then φ⊗ ω corresponds to π ⊗ α (det).
(5) The map preserves L-factors and ε-factors corresponding to tensor products of pairs.

If φj = (ρj, Nj) for j = 1, 2, then the relevant L-factor is L (s, φ1 ⊗ φ2), while the
epsilon factor ε (s, φ1 ⊗ φ2, ψ) is defined by a recipe of Deligne [5]. See [13, Section
3.2]. If πj is an irreducible admissible representation of GLnj

(F ) for j = 1, 2 then
L (s, π1 × π2) and ε (s, π1 × π2, ψ) are defined by the theory of Rankin–Selberg inte-
grals introduced by Jacquet–Piatetski-Shapiro–Shalika [9]. See [4] and [13, Section
2.5].

3. Special cases of the correspondence

We mention a few special cases of the correspondence.

3.1. Spherical representations. Recall that a representation π of GLn (F ) is called spher-
ical if it admits a non-zero spherical vector, that is, a vector invariant under the action of
GLn (o). It is well known that such π can be realized as a quotient of the (normalized)
parabolically induced representation

(3.1) Ind
GLn(F )
Bn

(|·|z1 ⊗ · · · ⊗ |·|zn)

for some z1, . . . , zn ∈ C. Such π is uniquely determined by the unordered complex num-
bers (q−z1 , . . . , q−zn) which are called the Satake parameters of π. Alternatively, the Satake
parameter of π can be defined as the conjugacy class in GLn (C) corresponding to the matrix

Sat (π) =

q−z1 . . .
q−zn

 .
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We define an L-factor corresponding to π by

L (s, π) = det
(
In − q−sSat (π)

)−1
=

n∏
j=1

(
1− q−zj · q−s

)−1
.

This L-factor records the Satake parameters of π. More specifically, the order of the pole of
L (s, π) at s = 0 records how many times 1 appears in the Satake parameters of π, which is
equivalent to the number of times that the trivial character appears in (3.1).

If π is a spherical representation corresponding to a quotient of (3.1), then under the local
Langlands correspondence π corresponds to the representation

φ =

(
ρ =

n⊕
j=1

|·|zj , N = 0

)
.

In this case, under a suitable basis

ρ (Fr) =

q−z1 . . .
q−zn

 and ρ (i) = In for any i ∈ IF .

One easily checks that L (s, π) = L (s, φ).
Hence the Langlands parameter of π in this case can be identified with its Satake param-

eter.

3.2. Steinberg representations. The Steinberg representation St (1, n) for GLn (F ) is de-
fined to be the unique irreducible subrepresentation of

Ind
GLn(F )
Bn

(
|·|

n−1
2 ⊗ |·|

n−3
2 ⊗ · · · ⊗ |·|−(

n−1
2 )
)

or the unique irreducible quotient of

Ind
GLn(F )
Bn

(
|·|−(

n−1
2 ) ⊗ |·|−(

n−3
2 ) ⊗ · · · ⊗ |·|

n−1
2

)
.

It is a square-integrable representation of GLn (F ). Its Langlands parameter is the Weil–
Deligne representation defined by φSt(1,n) = (ρ,N), where

ρ (Fr) =


q

n−1
2

q
n−3
2

. . .
q−(

n−1
2 )

 and ρ (i) = In

and

N =


0
1 0

1
. . .
. . . 0

1 0

 .
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For convenience, let us denote by Sp (n) the Weil–Deligne representation Sp (n) =

|·|
n−1
2 φSt(1,n), that is if Sp (n) =

(
ρSp(n), NSp(n)

)
then

ρSp(n) (Fr) =


1

q−1

. . .
q−(n−1)

 and ρSp(n) (i) = In

and

NSp(n) =


0
1 0

1
. . .
. . . 0

1 0

 .

3.3. Depth–zero supercuspidal representations. A irreducible admissible representa-
tion π of GLn (F ) is called supercuspidal if and only if the following equivalent conditions
are satisfied:

(1) For any unipotent radical N(n1,...,nr) ⊂ GLn (F ) where (n) ̸= (n1, . . . , nr) is a compo-
sition of n, we have that the Jacquet module

J (π) = π/SpanC
{
π (u) v − v | v ∈ π, u ∈ N(n1,...,nr)

}
vanishes.

(2) For any unipotent radical N(n1,...,nr) ⊂ GLn (F ) as above and any v ∈ π, the following
stable integral vanishes ∫ ∗

N(n1,...,nr)

π (u) vdv = 0.

This means that for any v ∈ π there exists K large such that for any k ≥ K∫
N(n1,...,nr)∩(1+Matn(p−k))

π (u) vdv = 0.

(3) The matrix coefficients of π are compactly supported, modulo the center.
Supercuspidal representations serve as building blocks for the irreducible representations of
GLn (F ). Under the local Langlands correspondence they correspond to irreducible1 Weil–
Deligne representations φ = (ρ,N) and it follows from irreducibility that N = 0.

By the work of Bernstein–Zelevinsky, the local Langlands correspondence reduces to under-
standing the local Langlands correspondence for irreducible supercuspidal representations.
This is the research area of Charlotte Chan, Stephen DeBacker and Tasho Kaletha (they
deal with arbitrary G and not necessarily GLn).

We give one example of an irreducible supercuspidal representation of GLn (F ) and its cor-
responding Weil–Deligne representation [3]. Let σ be an irreducible cuspidal representation
of GLn (Fq). Consider the quotient map ν : o → Fq. It induces quotient maps ν : o× → F×q

1The fact that supercuspidals correspond to irreducible representations follows from the L-factors equality
requirement by an inductive argument, which uses the fact that if π1, π2 are supercuspidal representations
then L (s, π1 × π2) has a pole at s0 ∈ C if and only if π1

∼= |det|−s0 π∨
2 .
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and ν : GLn (o) → GLn (Fq). Choose a character χ : F× → C× such that χ ↾o×= ωσ ◦ ν ↾F×
q
.

Let χ⊗ σ ◦ ν be the representation of F× ·GLn (o) defined by inflation as follows:

(χ⊗ σ ◦ ν) (z · k) = χ (z)σ (ν (k)) ,

for z ∈ F× and k ∈ GLn (o). Then the compactly induced representation

π = ind
GLn(F )

F×·GLn(o)
(χ⊗ σ ◦ ν)

is an irreducible supercuspidal representation of GLn (F ). What is its Langlands parameter?
The irreducible cuspidal representation σ corresponds to a Frobenius orbit, a set of size n of
the form {

θ, θq, . . . , θq
n−1
}
,

where θ : F×qn → C× is a character. The inertia subgroup IF has a subgroup PF called the
wild inertia subgroup. It satisfies

IF/PF
∼= lim
←−

F×
qk

where for k1 | k2, the map F×
qk2

→ F×
qk1

is the norm map. We have that π corresponds under
the Langlands correspondence to the parameter

φ = (ρ, 0n) ,

where

ρ = IndWF

⟨Frn⟩⋉IF

((
Frn 7→ (−1)n−1 χ (ϖ)

)
⊗ θ
)
.

Here, θ is realized with its image in

lim
−→

Hom
(
F×
qk
,C×

)
∼= Hom

(
IF/PF ,C×

)
,

where the transition maps are given by composition with the norm map. In matrix notation,
this can be written as

ρ (Fr) =


(−1)n−1 χ (ϖ)

1
1

. . .
1


and

ρ (i) =


θ (i)

θq (i)
. . .

θq
n−1

(i)


for i ∈ IF .
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3.4. Generalized Steinberg representations. Let τ be an irreducible supercuspidal rep-
resentation of GLk (F ). We may define similarly to before a (generalized) Steinberg repre-
sentation associated to τ as follows. Consider the (normalized) parabolic induction

Ind
GLkc(F )
P(kc)

(
|det|−(

c−1
2 ) τ ⊗ |det|−(

c−3
2 ) τ ⊗ · · · ⊗ |det|

c−1
2 τ
)
.

It admits a unique irreducible quotient, which we denote St (τ, c). If τ has a unitary cen-
tral character, then St (τ, c) is a square-integrable representation of GLkc (F ). All square-
integrable representations arise in this way.

To St (τ, c) we assign a Langlands parameter as follows. Suppose that τ corresponds to
φτ = (ρτ , 0) and let φSt(1,c) =

(
ρSt(1,c), NSt(1,c)

)
as in Section 3.2. Then we assign to St (τ, c)

the Langlands parameter (
ρτ ⊗ ρSt(1,c), idρτ ⊗NSt(1,c)

)
.

In matrix form,

ρSt(τ,c) (w) =


|w|−(

c−1
2 ) ρτ (w)

|w|−(
c−3
2 ) ρτ (w)

. . .
|w|

c−1
2 ρτ (w)

 for any w ∈ WF

and

NSt(τ,c) =


0k
Ik 0k

Ik
. . .
. . . 0k

Ik 0k

 .

3.5. Bernstein–Zelevinsky classification and reduction to supercuspidals. Bern-
stein and Zelevinsky [1, 2, 14] gave a classification of all irreducible admissible representa-
tions of GLn (F ). To explain it, we first introduce the notion of an interval. An interval is a
set of the form

(3.2) ∆ =
{
τ, |det| τ, |det|2 τ, . . . , |det|c−1 τ

}
,

where τ is an irreducible supercuspidal representation of GLk (F ) for some k. We call τ the
left-most element of ∆. We say that two intervals are linked if neither of them is contained
in the other, and if their union is also an interval. If ∆1 and ∆2 are intervals, we say that
∆1 precedes ∆2 if ∆1 and ∆2 are linked and if the left-most element of the union is in ∆1.

Given such interval an interval ∆ as in (3.2), we define Q (∆) to be the unique irreducible
quotient of the (normalized) parabolic induction

τ × |det| τ × · · · × |det|c−1 τ := Ind
GLkc(F )
P(kc)

(
τ ⊗ |det| τ ⊗ · · · ⊗ |det|c−1 τ

)
.

Note that Q (∆) is simply |det|
c−1
2 St (τ, c), and the Langlands parameter of Q (∆) is φQ(∆) =(

ρQ(∆), NQ(∆)

)
=
(
|·|

c−1
2 ρSt(τ,c), NSt(τ,c)

)
.

Bernstein–Zelevinsky showed that given intervals ∆1, . . . ,∆r such that ∆i does not precede
∆j for i < j, the (normalized) parabolic induction Q (∆1) × · · · × Q (∆r) admits a unique
irreducible quotient Q (∆1, . . . ,∆r). They showed that any irreducible representation π of
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GLn (F ) is isomorphic to a representation obtained in this way. We refer to [13, (2.2.9)] for
a nice summary of their results.

Suppose that π = Q (∆1, . . . ,∆r) for intervals as above. Then the Langlands parameter
of π is φπ =

(⊕r
j=1 ρQ(∆j),

⊕r
j=1NQ(∆j)

)
.

3.5.1. Tamely ramified with unipotent monodromy representations. Our seminar tries to es-
tablish a story about TRUM representations. Let us recall that this means that φ = (ρ,N),
where the restriction of ρ to the inertia subgroup is trivial. Suppose that

(ρ,N) =
r⊕

j=1

(ρj, Nj)

where for any j, we have that

ρj (Fr) =


q−sj

q−sj−1

. . .
q−sj−nj+1

 and Nj =


0

1
. . .
. . . 0

1 0

 ∈ Matnj
(F ) ,

where sj ∈ C. Assume without loss of generality that Res1 ≥ · · · ≥ Resr. Then the intervals

∆j =
{
|·|sj , . . . , |·|sj+nj−1}

satisfy that ∆i does not precede ∆j for i < j. The representation π that corresponds to such
φ is the unique irreducible quotient of the (normalized) parabolic induction

(3.3) |det|s1+
n1−1

2 St (1, n1)× · · · × |det|sr+
nr−1

2 St (1, nr) .

On the other hand, on the group side, our seminar tries to classify irreducible admissible
representations with a vector invariant to the Iwahori subgroup, defined as the inverse image
of the Borel subgroup Bn (Fq) under the quotient map ν : GLn (o) → GLn (Fq). In the case
that we have in hand, Howe showed that these representations are precisely the ones of the
form (3.3) [8].

4. The Local Langlands correspondence for other groups

For G a split connected algebraic reductive group, the local Langlands correspondence is
more complicated. We do not say much about it here.

In this case, we need to consider parameters of the form

φ = (ρ,N) ,

where ρ : WF → Ĝ (C) and N ∈ Lie
(
Ĝ
)

is a nilpotent, such that

ρ (w)Nρ (w)−1 = |w| ·N,
for any w ∈ WF . In this case, instead of having a bijection, we have a correspondence, where
for every semisimple parameter φ, there exist finitely many irreducible representations π of
G (F ), such that the parameter of π is φ. There is a way to refine this statement and get a
bijection. A common analogy used is referring to the parameter φ as the “last name” of the
representation. The finite set of all representations π with a given parameter φ is called the
L-packet of φ. This is a family, where each element has last name φ. The “first name” of
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the representation is an additional parameter indexing the L-packet. See [6, Section 1.1] for
a nice overview.

As before, spherical representations correspond to representations of the form φ = (ρ,N),
where the inertia group IF maps to identity and N = 0. In this seminar, we are concerned
with similar representations, the difference being that N is not necessarily zero.

4.1. Brief summary of the reduction in this case. Take G to be one of GLn, SOn, Sp2n.
The group Ĝ is given by the following table.

G Ĝ

GLn GLn

SO2n+1 Sp2n

Sp2n SO2n+1

SO2n SO2n

Instead of taking φ = (ρ,N) as in the previous section, it turns out to be more convenient
to take homomorphisms φ′ : WF ×SL2 (C) → Ĝ (C). In the case of G = GLn, the translation
is as follows: we replace

φ =
r⊕

i=1

(
ρi ⊗ ρSp(ni), idρi ⊗NSp(ni)

)
,

with

φ′ =
r⊕

i=1

|·|
ni−1

2 ρi ⊗ Symni−1
(
C2
)
,

where ρi : WF → GLmi
(C) is an irreducible representation for every i. Note that

Symni−1 (C2) is the unique irreducible representation of SL2 (C) of dimension ni. In partic-
ular, the generalized Steinberg representation St (τ, c) (where τ is irreducible supercuspidal)
corresponds to φ′ = ρτ ⊗ Symc−1 (C2).

In the local Langlands correspondence for GLn we had that irreducible supercuspidal
representations π of GLn corresponded to φ = (ρ, 0) where ρ : WF → GLn (C) was an irre-
ducible representation. In the local Langlands correspondence for Ĝ this is slightly modified.
We have that essentially square–integrable representations of G correspond to L-parameters
φ′ : WF ×SL2 (C) → Ĝ (C) satisfying that their image does not lie in a proper levi subgroup
of Ĝ.

We move to describe the Langlands classification of irreducible representations of G (F )
for G ̸= GLn, which we will utilize in order to reduce the Langlands correspondence to
essentially square-integrable representations [11]. We first need to discuss the classification
of tempered irreducible representations.

Any tempered irreducible representation τ of GLn (F ) can be realized as a (normalized)
parabolic induction

τ = τ1 × · · · × τr,

where τ1, . . . , τr are square-integrable representations of GLn1 (F ), . . . , GLnr (F ), respec-
tively, which in turn are each generalized Steinberg representations corresponding to super-
cuspidal representations with unitary central character. Recall that we attach to such τ the
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Langlands parameter

φ′τ =
r⊕

i=1

φ′τ i .

For G ̸= GLn, consider the (normalized) parabolically induced representation

(4.1) τr × · · · × τ1 ⋊ π0,

where π0 is a square-integrable irreducible representation of G0 (F ), a group of the same type
as of G but of smaller size, and τ1, . . . , τr are square integrable irreducible representations
of GLn1 (F ), . . . , GLnr (F ), respectively. Then (4.1) is semi-simple, and every irreducible
subrepresentation of (4.1) is tempered (for the groups we are considering, (4.1) is multiplicity
free). Every tempered irreducible representation π of G (F ) can be realized in this way [10].
We associate to such π the following Langlands parameter

φ′π =
r⊕

i=1

φ′τi ⊕ φ′π0
⊕

r⊕
i=1

φ′τ∨i .

We are now ready to describe the Langlands classification for G (F ) (for G ̸= GLn) [12],
[7, Theorem 8.4.2]. Given a tempered irreducible representation π0 of G0 (F ), tempered
irreducible representations τ1, . . . , τr of GLn1 (F ), . . . , GLnr (F ), respectively, and complex
numbers s1, . . . , sr satisfying Resr > Resr−1 > · · · > Res1 > 0, the parabolically induced
representation

(4.2) |det|sr τr × |det|sr−1 τr−1 × · · · × |det|s1 τ1 ⋊ π0

has a unique irreducible quotient. Any irreducible representation π can realized in this way.
If π is the unique irreducible quotient of (4.2), we associate to π the Langlands parameter

φ′π =
r⊕

i=1

|·|si φ′τi⊕φ
′
π0

⊕
r⊕

i=1

|·|−si φ′τ∨i .
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