INTRODUCTION TO HECKE ALGEBRAS

ELAD ZELINGHER

Let F' be a non-archimedean local field with ring of integers o, maximal ideal p, uniformizer
w € p\ o and residue field F,. Let G be a split connected algebraic reductive group over F,
with split maximal torus A and Borel subgroup B = AN. Let K = G (0) be a hyperspecial
maximal open compact subgroup of G. Let W be the Weyl group of G, that is, the normalizer

of A in G modulo A.
Let X, (A) denote the cocharacter group

X. (A) = Hom (G, A) = {p/: F* — A | p" algebraic character} .

For an element p¥ € X, (A) we denote w"' = " (w). The map p + w" defines an
isomorphism

X, (A) = A(w) = A/A (o),
where A (o) = ANK.

Example 1. When G = GL,,,

aq
A= a,...,a, € F*
G
and
X.(A)=7Z"
by the isomorphism sending
k1
Za(k']_,?k'n)H/JE/kl 77777 kn) (ZE):
xhn
In this case,
wh
A(w)=A/A(0) & | k1,... kn €Z ),
vl
where
a1
Ao) = | ai,...,a, € 0"

an

It is clear that the map X, (4) — A(w) given by (ki,...,kn) = py, 4y (@) is an isomor-
phism.
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For any compact open subgroup K C G let
H(GJK)={feCZ(G)| f(kgk') = f(9), Vg€ G kK €K}

A basis for H (G // K) is given by the characteristic functions {x,x }, where g runs over all
the representatives of cosets of K\G/K.
The space H (G J/ K) is an algebra with convolution as multiplication:

(fi* f2) (9) = /Gf1 (z7") f2 (zg) da.

1. SPHERICAL HECKE ALGEBRA
Recall the Cartan decomposition: we have that

G = LJ K- K.

Y

1V is dominant

It follows from applying Gelfand’s trick to an involution based on the Chevalley data, that
H (G J/ K) is commutative (the involution should act trivially on w*” for any ;" and send
K to itself).

------

The involution in this case is x — ‘z. In this case, under the isomorphism above, every
dominant cocharacter can be written as a product of the form

i]" i2"'-' /Ln
ap - Qg Qp s

where i1,...,1, € Z and i1,...,i,_1 > 0, and for 1 < j <n,

wl;
aj—( J In_])'

The spherical Hecke algebra H (G J/ K) can be realized as compactly supported C-valued
functions on A (w), that are invariant under the action of the Weyl group W.

If K C K is an arbitrary compact open subgroup, then H (G // K) is not commutative
when K # K. However, we have the following relation. If py and pg are dominant cochar-
acters then

XY k¥ XS k= XY ¥k — Xt ¥ g
Let R} be the algebra generated by the elements X _.v x, where u" goes over all the
dominant cocharacters. Then R} is a commutative subalgebra of H (G J/ K). Using the
Cartan decomposition, we may decompose

H(G)K)=H(KJK)*R+«H(K/JK).

Here, H (K J/ K) is a finite-dimensional algebra, consisting of functions K — C bi-invariant
under K, and R}, is abelian. This shows that H (K / K) breaks into two pieces: a small
(finite-dimensional) non-commutative one, and a large (infinite-dimensional) abelian one.

Remark 3. An important feature that we will not discuss is the Jacquet functor. Suppose
that P = MU C G is a proper parabolic subgroup with Levi part M, and U~ is the radical
opposite to U. Suppose that we have a Iwahori-type decomposition|!, Lemma 3.11]

K=(KnU")(KNM)(KNU).
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(for instance, this holds for K = K and K = 7 from the next section). Let 7 be an admissible
representation of G. Let

Jy (7) = 7/spanc {7 (v)v —v|veEmueU}.
Then the quotient map
T — Jy (7)

defines a surjection for the subspaces of K-fixed vectors:

K = Jy ()™M

This can be used to show that certain representations can be embedded as subrepresentations
of principal series representations. See for example [4, Section 12].

2. IWAHORI-MATSUMOTO HECKE ALGEBRA
Consider the quotient map
v: K—= G(F,).

The inverse image of B (F,) under this map is called the Iwahori subgroup of G (F'). We
denote it by Z. Assume henceforth that the Haar measure is normalized so that Z has
measure 1.

Example 4. If G = GL,, then

([0* o o0 0o\ )
p o0* o 0
I=v"'(B(F,)) = pop
: : 0% o
(\p P p o*/) )

Let W =W xA (w) be the extended affine Weyl group. We have the following Bruhat—
Iwahori decomposition:
G=Jz 2T
zeW
It follows that {X7...7},ci forms a basis for H (G /).

The group W is almost a Coxeter group. It has a well-known standard presentation. In
general,

W:Wagxm(G),

where 7 (G) is the fundamental group of G and W,g is the affine Weyl group, generated by
all affine reflections. W,g has a standard presentation as a Coxeter group.

Example 5. When G = GL,, we have that W,g is generated by sq,...,s, satisfying the
relations

(1) s =1.

(2) sjsp = sps; if j —k # 0,£1 (modn).

(3) sj8j+15j = 8j415;8j41, where j + 1 is taken modulo n.
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We have that m; (GL,,) = Z and that if h € m (GL,,) is a generator, then for any j
h,S]'hil = Sj+1,

where j + 1 is taken modulo n.
We may choose the following matrices to represent these elements: for 1 < j < n —1,
choose for s; the permutation matrix that swaps the columns at positions j and j+41. Choose

and

There is a notion of the length of an element in WW: since Wag is a Coxeter group, it comes
with a length function ¢: W, — Z>o and we denote by ¢: W — W,z — Z>( the length
function of W.

Example 6. If G = GL, then any element in W can be written in the form
w = hm . Sil . Sig ..... S’ira

where m € Z. We denote by ¢ (w) the minimal r such that w can be written in such form.
Such presentation of w is called a reduced expression.

The elements of H (G J/ Z) corresponding to the generators of W generate H (G J/ Z) as
an algebra. They satisfy the corresponding Hecke algebra relations.

Example 7. If G = GL,, let us define for any w € W

Ju = Xzw1-
Then we have the following relations:
(1) fs; * fs; = (@ —1) fs; + q. This can also be written as

(ij _q) * (fsj + 1) =0.

(2) fs; * for = fs * [s, if § — k 2 0,£1 (modn).
(3) fo; * fojin ¥ fs; = fsjon ¥ [s; * fs, 41, Where j + 1 is taken modulo n.
(4) fur = fi "

(5) fn* Js; * fh_l = fs;41, Where j + 1 is taken modulo n.

Remark 8. We may attach to W, an Iwahori-Matsumoto Hecke algebra H, (Wag). It is an
algebra over Z [v,v!]. The Iwahori-Matsumoto Hecke algebra is generated by the generators
T, for any generator s of W,g and is subject to their relations, where we modify the quadratic
relations s = 1 to be
(T —v) (Ts+v") =0,
for every quadratic generator s of W,g. Then Iwahori and Matsumoto proved that if G is
semisimple then H (G J/ Z) is isomorphic to Hq 1 (Wag). More generally, we have that
HK)T)= Hq; (Was)
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and that

MG D)= HK ) T) o, Rz,

q%,q*%]
by the isomorphism sending

XZwI® [+ XzTwz* [
See the definition of Rz below.

2.1. Bernstein—Zelevinsky relation. Denote for w € W,

fw = XZw-Z-

Recall that Rz is the subalgebra of H (G J/ Z) generated by f_,.v for every dominant cochar-
acter pV. If py and p3 are dominant cocharacters then we have that

/ (quu¥> — ¢ (quwu¥> — ¢ (qu> 4/ (wug) 7
and

(2.1) oy ® oy =T wywy = _uyuy-
In particular R} is commutative. It can be shown from the relations of the generators of

the Hecke algebra that f,, is invertible for any w € W. Let Rz be the algebra generated by
fouv and f;iv for every dominant cocharacter p¥. It seems tempting to define a map

A(w) = RS
by the formula
w“v — fwuv.

However, this map will not be a group homomorphism A (w) — R7. This can be fixed as
follows. First let us define a normalization of f,:

If \V is a cocharacter, we can write \Y = pui - (u3

cocharacters. We define a map

)~! where pY and Y are dominant

0: Alw) — RF,
-1
0 ()\V) = TMY * (Tug) .
This is well defined because of (2.1). This map is now a homomorphism.

Example 9. If G = GL,, then if we denote

]j—l
bj = w s
I,
then
—1
and
-1

0 (b]) = Taj * (Taj,l) .

One now needs to express a;_; as a product of A7 and of the generators si,...,s,_1 in

order to be able to write an expression for (T ajfl)fl as a product of the inverses of the
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corresponding generators. In turn, these inverses are computed using the quadratic relations
of the Hecke algebra.

Theorem 10 (Bernstein—Zelevinsky presentation). Let s be any one of the generators of Wag
(as a Coxeter group). For any cocharacter \¥ we have that 0 (\Y) — 6 (s (\Y)) is divisible by
1-6 (av)f1 in the ring Rz and the following equality holds:
ON)T, —Ts0 (s (X)) =Ts0 (\Y) — 0 (s (\Y)) T,
1 1 9 )\\/ — 9 S /\\/
(g —qrt) 200060
1—-0(aY)

where & is a certain fundamental cocharacter on which s acts by s (a¥) = («

9

Example 11. When G = GL,,, recall that AV is parameterized by \V = Nzlk17~-~,kn) where
ki,...,k, € Z. We have that W = (s; | 1 <i<n) = S, acts on A\Y by permuting the
coordinates (kq,...,k,) € Z. In this case, s = s, for some k and

o’ = =(0,0,...,0,—1,1,0,...,0)
is the cocharacter corresponding to the matrix
I

sof(aY)="T, ,*T, T, 2

Gk—1 A1 ar

2.2. Center of H (G /). From the Bernstein-Zelevinsky relation, the following descrip-
tion of the center of H (G J/ Z) can be concluded.

Theorem 12. The center of H (G JJ I) is the subspace of RE consisting of elements of the

form
Z a0 (1)

N

such that ay,v = a,v for every w € W and cocharacter p”. In particular, this center is
. . w

isomorphic to C[A (w)]" .
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