THETA DICHOTOMY

ELAD ZELINGHER

- F_0 number field.
- F/F_0 quadratic extension.
- $0 \neq \delta \in F^{\times}$ a trace zero element.
- W split skew-herimitan space of dimension 2n,
- V non-degenerate hermitian of dimension m = 2n.
- G = U(W)
- H = U(V)

• $\psi_0: F_0 \setminus \mathbb{A}_{F_0} \to \mathbb{C}^{\times}$ a non-trivial additive character. Define $\psi: F \setminus \mathbb{A}_F \to \mathbb{C}^{\times}$ by $\psi(x) = \psi_0(\operatorname{tr}(\delta x))$. For place v, let $\eta_v: F_{0v}^{\times}/N(F_v^{\times}) \to \{\pm 1\}$ be the quadratic character. We define

$$\varepsilon(V_v) = \eta_v (\operatorname{disc} V_v),$$

where

$$\operatorname{disc} V_{v} = (-1)^{\frac{m(m-1)}{2}} \operatorname{det} V_{v} \in F_{0v}^{\times} / N\left(F_{v}^{\times}\right).$$

Given a sequence $(U_v)_v$ of non-degenerate hermitian spaces of dimension m, there exists a non-degenerate hermitian space \mathbb{U} over F such that $\mathbb{U}_v = U_v$ if and only if the following two conditions are satisfied:

- (1) $\varepsilon(U_v) = 1$ for all but finitely many v.
- (2) $\prod_{v} \varepsilon (U_{v}) = 1.$

Let π be an irreducible cuspidal automorphic representation of G. When is $\Theta_V(\pi) \neq 0$?

By Jialiang's talk we need:

- (1) $L\left(\frac{1}{2},\pi\right) \neq 0.$
- (2) $\prod_{v} Z_{v}^{\#}(0) \neq 0.$

Theta dichotomy: for every non-split place v there exists a unique local non-degenerate hermitian space $V_v = V_v(\pi_v)$ of rank 2n over F_v such that $Z_v^{\#}(0) \neq 0$. If v is a non-split finite place then we can pinpoint the space exactly using the root number. We have that $Z_v^{\#}(0) \neq 0$ if and only if

$$\varepsilon(V_v) = \omega_{\pi_v}(-1) \cdot \varepsilon\left(\frac{1}{2}, \pi_v, \psi_v\right).$$

This also holds in the archimedean case, but in the archimedean case, $\varepsilon(V_v)$ does not determine the space V_v .

For any irreducible cuspidal automorphic representation $\pi = \bigotimes_v \pi_v$ of $G(\mathbb{A}_F)$ we obtain a sequence of hermitian spaces $(\mathbb{V}(\pi_v))_v$ such that $\Theta_{\mathbb{V}(\pi_v)}(\pi_v) \neq 0$. Denote

$$\varepsilon\left(\mathbb{V}_{\pi}\right)\coloneqq\prod_{v}\varepsilon\left(\mathbb{V}\left(\pi_{v}\right)\right).$$

We therefore have the equality

$$\varepsilon\left(\mathbb{V}_{\pi}\right) = \varepsilon\left(\frac{1}{2},\pi\right),$$

where

$$\varepsilon\left(\frac{1}{2},\pi\right) = \prod_{v} \varepsilon\left(\frac{1}{2},\pi_{v},\psi_{v}\right) = \prod_{v} \omega_{\pi_{v}}\left(-1\right) \cdot \varepsilon\left(\frac{1}{2},\pi_{v},\psi_{v}\right)$$

By the remark above, we can glue $(\mathbb{V}(\pi_v))$ to a hermitian space V over F if and only if We have

$$\varepsilon(\mathbb{V})=1,$$

which is equivalent to

$$\varepsilon\left(\frac{1}{2},\pi\right) = 1.$$

If $\varepsilon(\frac{1}{2},\pi) = 1$, we say that π (or \mathbb{V}_{π}) is *coherent*. In this case, the global theta lift of π from $G(\mathbb{A})$ to $H(\mathbb{A})$ (where H = U(V)) is non-zero if and only if

$$L\left(\frac{1}{2},\pi\right) \neq 0.$$

In which case, we have that $\Theta_U(\pi) = 0$ for any other non-degenerate hermitian space U over F of dimension 2n.

If $\varepsilon\left(\frac{1}{2},\pi\right) = -1$, we say that π (or \mathbb{V}_{π}) is *incoherent*. In this case, the global theta lift of π from $G(\mathbb{A})$ to $H(\mathbb{A})$ is zero for any H = U(V), where V is any non-degenerate hermitian space over F. One of the goals of this seminar is to show that

$$L'\left(\frac{1}{2},\pi\right) \neq 0$$

implies that the arithmetic theta lift is not zero.