BEZRUKAVNIKOV'S EQUIVALENCE SEMINAR - PERVERSE SHEAVES

ROBERT CASS

Recap and Roadmap: Let G be a split reductive algebraic group, $F = \mathbb{F}_q(\mathbf{k})$, $\mathcal{O} = \mathbb{F}_q[\mathbf{k}]$. Let G be the Langlands dual group. The Kazhdan–Lusztig isomorphism describes the structure of the (generic) affine Hecke algebra

$$
\mathcal{H} \cong K^{\hat{G} \times \mathbb{G}_m}(\hat{\mathrm{St}}).
$$

Bezrukavanikov's equivalence upgrades this to categories, but it does not (yet) have a free parameter q :

$$
D_{\mathcal{I}}(\mathrm{Fl}_{\overline{\mathbb{F}}_q}, \overline{\mathbb{Q}}_{\ell}) \cong D^b \mathrm{Coh}^{\hat{G}}(\widehat{\mathrm{St}})
$$

where $\hat{S}t$ is the (derived) Steinberg variety for \hat{G} . The key step was the construction of a faithful action

$$
\mathcal{H} \curvearrowright \text{anti-spherical module} \cong K^{\hat{G} \times \mathbb{G}_m}(\widetilde{\mathcal{N}})
$$

where $\tilde{\mathcal{N}}$ is the Springer resolution of the nilpotent cone for \hat{G} . We will categorify the latter action by constructing an equivalence of two categories:

$$
D_{\mathcal{IW}}(\mathrm{Fl}_{\overline{\mathbb{F}}_q}, \overline{\mathbb{Q}}_{\ell}) \cong D^b \mathrm{Coh}^{\hat{G}}(\widetilde{\mathcal{N}}).
$$

The left side is called the the category of Iwahori–Whittaker sheaves on $Fl_{\overline{\mathbb{F}}_q}$, which after we define it will clearly be a geometrization of the anti-spherical module. The first step toward this is to categorify two descriptions of the center $Z(\mathcal{H}(G(F)/\mathcal{I})) \cong \mathcal{H}(G(F)/\mathcal{G}(O))$, via geometric Satake

$$
\text{Perv}_{G(\mathcal{O})}(\text{Gr}_{\overline{\mathbb{F}}_q}, \overline{\mathbb{Q}}_\ell) \cong \text{Rep}_{\overline{\mathbb{Q}}_\ell}(\hat{G}) \cong \text{Coh}^{\hat{G}}(\text{Spec } \overline{\mathbb{Q}}_\ell)
$$

and Gaitsgory's central functor

$$
\text{Perv}_{G(\mathcal{O})}(\text{Gr}_{\overline{\mathbb{F}}_q}, \overline{\mathbb{Q}}_{\ell}) \to \text{Perv}_{\mathcal{I}}(\text{Fl}_{\overline{\mathbb{F}}_q}, \overline{\mathbb{Q}}_{\ell}).
$$

In this talk we will give background on these tools from algebraic geometry: (equivariant) perverse sheaves and derived categories.

Derived Categories: Let A be an abelian category (e.g., Mod-R or $\text{Sh}(X, R)$). Then A has a notion of exact sequences. An additive functor $F: A \to A'$ is exact if it preserves exact sequences. Many interesting functors are not quite exact. For example, the functor of global sections

$$
\Gamma(X, -) \colon \text{Sh}(X, R) \to \text{Mod-}R
$$

is only left exact:

$$
0 \to M_1 \to M_2 \to M_3 \to 0 \Rightarrow 0 \to \Gamma(X, M_1) \to \Gamma(X, M_2) \to \Gamma(X, M_3).
$$

The derived functors of $\Gamma(X, -)$ remedy this. We have $\Gamma(X, -) = H^0(X, -)$, and there is a long exact sequence

 $0 \to H^0(X, M_1) \to H^0(X, M_2) \to H^0(X, M_3) \to H^1(X, M_1) \to H^1(X, M_2) \to H^1(X, M_3) \to H^2(X, M_1) \to \cdots$

The $H^{i}(X, M)$ are defined as follows. Pick any injective resolution of M:

$$
0 \to M \to I_0 \to I_1 \to \cdots,
$$

where the complex above is acyclic and the I_k are injective. Then apply $\Gamma(X, -)$ and take cohomology of the complex with $\Gamma(X, M)$ removed:

$$
H^{i}(X, M) := \frac{\ker(\Gamma(X, I_i) \to \Gamma(X, I_{i+1}))}{\text{im}(\Gamma(X, I_{i-1}) \to \Gamma(X, I_i))}.
$$

This is independent of the choice of injective resolution up to canonical isomorphism.

Derived categories allow one to package the $H^{i}(X, -)$ into a single functor for all i. If A is a Grothendieck abelian category, this is constructed as follows. Let $Ch^+(\mathcal{A})$ be the category of bounded below chain complexes in A, meaning

$$
\mathcal{C}_{\bullet} = \cdots \to A_{-1} \to A_0 \to A_1 \to \cdots, \quad A_i = 0 \text{ for } i \ll 0.
$$

A quasi-isomorphism $\mathcal{C}_\bullet \to \mathcal{D}_\bullet$ is a map of chain complexes which induces isomorphisms on cohomology

$$
H^i(\mathcal{C}_\bullet) \cong H^i(\mathcal{D}_\bullet) \in \mathcal{A}, \quad \text{ for all } i.
$$

The derived category $D^+(\mathcal{A})$ is the localization of $Ch^+(\mathcal{A})$ at the quasi-isomorphisms, i.e. there is a functor $Ch^+(\mathcal{A}) \to D^+(\mathcal{A})$ which is universal for functors sending quasi-isomorphisms to isomorphisms. The category $D^+(\mathcal{A})$ has the same objects as \mathcal{A} , but in general it is difficult to compute Hom spaces in a localization. Remarkably, restricting only to complex of injectives, the natural functor $\mathrm{Ch}^+(\mathrm{Inj}(\mathcal{A})) \to \mathrm{Ch}^+(\mathcal{A}) \to D^+(\mathcal{A})$ induces equivalences

$$
\operatorname{Hom}_{K^+(\operatorname{Inj}({\mathcal A}))}({\mathcal C}_\bullet,{\mathcal D}_\bullet)=\operatorname{Hom}_{D^+({\mathcal A})}({\mathcal C}_\bullet,{\mathcal D}_\bullet)
$$

where $K^+(\text{Inj}(\mathcal{A}))$ is the *homotopy category* of Inj(\mathcal{A}), meaning one considers two maps $\mathcal{C}_\bullet \to \mathcal{D}_\bullet$ to be equivalent if they are chain-homotopic to each other. By the definition of a quasi-isomorphism, the operation of taking the cohomology of a chain complex descends to the derived category:

$$
H^i(-)\colon D^+(\mathcal{A})\to \mathcal{A}.
$$

Now given a left-exact functor $F: \mathcal{A} \to \mathcal{A}'$, there is a derived functor fitting into a diagram

and $\text{Ch}^+(\mathcal{A}) \to D^+(\mathcal{A}) \xrightarrow{RF} D^+(\mathcal{A}')$ is initial among exact functors whose composite with $\text{Ch}^+(\mathcal{A}) \to D^+(\mathcal{A})$ is equipped with a natural transformation from $\text{Ch}^+\mathcal{A} \stackrel{F}{\to} \text{Ch}^+(\mathcal{A}') \to D^+(\mathcal{A}')$. Then the $H^i(RF)$ are the usual derived functors of F. To compute $RF(\mathcal{C}_{\bullet})$, find a bounded below chain complex of injectives \mathcal{I}_{\bullet} with a quasi-isomorphism $C_{\bullet} \to \mathcal{I}_{\bullet}$, and then set

$$
RF(\mathcal{C}_{\bullet}):=F(\mathcal{I}_{\bullet}).
$$

The category $D^+(\mathcal{A})$ is *triangulated*, meaning there is an auto-equivalence [1] defined by $(C_\bullet[1])_i = C_{i+1}$, along with a notion of *exact triangles*. If $C^1_{\bullet} \to C^2_{\bullet} \to C^3_{\bullet}$ is an exact triangle (for example, the image of an exact sequence in A under $A \to D^+(\mathcal{A})$, then there is an associated long exact sequence of the cohomology groups. The derived functor RF preserves exact triangles.

Perverse Sheaves: Let X be a scheme of finite-type over a field k, and let $\ell \neq \text{char}(k)$ be a prime. Then there is an abelian category of $\mathrm{Sh}(X) := \mathrm{Sh}(X, \overline{\mathbb{Q}}_{\ell})$ of étale $\overline{\mathbb{Q}}_{\ell}$ -sheaves on X. Some of the nicest sheaves are local systems. For coefficients in a finite ring R such as $\mathbb{Z}/l^n\mathbb{Z}$, a local system on X is a sheaf $\mathcal{L} \in Sh(X, R)$ such that there exists an étale cover $f: Y \to X$ with $f^*\mathcal{L}$ isomorphic to the étale sheaf associated to a finite R-module. The definition of $\overline{\mathbb{Q}}_{\ell}$ -local systems is built from this by passing to the inverse limit over $\mathbb{Z}/l^n\mathbb{Z}$, then inverting ℓ , and finally extending scalars to $\overline{\mathbb{Q}}_{\ell}$ (alternatively, use the pro-étale topology). A sheaf $\mathcal{F} \in Sh(X)$ is *constructible* if there exists a finite stratification $X = \sqcup_{i \in I} X_i$ by smooth, irreducible locally closed subschemes such that $\mathcal{F}|_{X_i}$ is a local system for all *i*.

For $f: X \to Y$, there are adjoint functors

$$
f^* \colon \mathrm{Sh}(Y) \rightleftarrows \mathrm{Sh}(X) \colon f_*.
$$

While f^* is exact, f_* is only left exact. In this context, the derived functor is already defined on the *bounded* constructible derived category $D^b(X) := D_c^b(X, \overline{\mathbb{Q}}_\ell)$. In general there are adjoint functors

$$
f^* = Rf^* : D^b(Y) \rightleftarrows D^b(X) : Rf_*,
$$

$$
Rf_! : D^b(Y) \rightleftarrows D^b(X) : f^!.
$$

Here $f_!$ is the functor of global sections with compact support, while $f_!$ is only defined on the derived category. There is a base change formula for $f_!$ and f^* , and there also a base change formula for f_* and $f^!$.

When f is proper we have $f_* = f_!,$ and when f is smooth we have $f' = f^*[2 \dim X/Y](\dim X/Y)$. There is also an internal Hom functor and derived tensor product. If k is algebraically closed then the derived global sections functor satisfies $R\Gamma(X, -) \cong Rf_*$ where $f: X \to \text{Spec } k$. We have

$$
R\Gamma(X, -) \cong \text{RHom}_{D^b(X)}(\overline{\mathbb{Q}}_{\ell}, -) \colon D^b(X) \to D^b(\text{Spec } k) \cong \left\{ \begin{array}{c} \text{Chain complexes of} \\ \text{finite-dimensional } \overline{\mathbb{Q}}_{\ell}\text{-vector spaces} \end{array} \right\}
$$

The cohomology sheaves of this complex are

$$
R^i\Gamma(X) = \operatorname{Hom}_{D^b(X)}(\overline{\mathbb{Q}}_{\ell}[i], -).
$$

Let $\omega_X = f^! \overline{\mathbb{Q}}_\ell$ where $f: X \to \text{Spec } k$. This is called a *dualizing complex*. Using this and internal Hom we define the Verdier duality functor, which is an anti-equivalence of $D^b(X)$:

$$
\mathbb{D}(-) := \mathcal{R} \mathcal{H} \text{om}_{D^b(X)}(-, \omega_X)
$$

The functor $\mathbb D$ swaps f_* with $f_!$ and f^* with $f_!$. Note: if X is smooth then $\omega_X = \overline{\mathbb Q}_\ell[2\dim X](\dim X)$, which leads to Poincaré duality.

If X is smooth, then for any local system $\mathcal L$ the shifted complex $\mathcal L[\dim X] \in D^b(X)$ is an example of a perverse sheaf. In general, perverse sheaves form an abelian category

$$
\operatorname{Perv}(X) \subset D^b(X).
$$

Here a sequence of perverse sheaves is exact if and only if it is an exact triangle in the derived category. Very similarly to the cohomology functors $H^{i}(-)$, there are functors

$$
{}^{p}H^{i}(-)\colon D^{b}(X)\to \operatorname{Perv}(X)
$$

which send exact triangles to long exact sequences. In particular, it makes sense to say that an object $\mathcal{F} \in D^b(X)$ lies in perverse degrees $\leq n$ or $\geq n$. Now for the definition. Let

$$
{}^pD^b(X)^{\leq 0} \subset D^b(X)
$$

be the subcategory consisting of F such that there exists a stratification $X = \bigcup_{i \in I} X_i$ with the property that

$$
H^{n}(\mathcal{F}|_{X_{i}}) \begin{cases} \text{vanishes} & n > -\dim X_{i} \\ \text{is a local system} & n \leq -\dim X_{i}.\end{cases}
$$

We set

$$
{}^{p}D^{b}(X)^{\geq 0} = \mathbb{D}(D^{b}(X)^{\leq 0}), \quad \text{Perv}(X) = {}^{p}D^{b}(X)^{\leq 0} \cap {}^{p}D^{b}(X)^{\geq 0}.
$$

One advantage of perverse sheaves over constructible sheaves is that every perverse sheaf has finite length (just like the category of representations of an algebraic group!)

Suppose $j: X \to Y$ is a locally closed immersion. The *intermediate extension* functor is

$$
j_{!*} := \text{Im}(^p H^0(Rj_!(-)) \to {}^p H^0(Rj_*(-)))
$$
: Perv(X) \to Perv(Y).

If $\mathcal{F} \in \text{Perv}(X)$ is irreducible, then $j_{!*}(\mathcal{F})$ is irreducible. Note that if X is smooth and irreducible and \mathcal{L} is an irreducible local local system on X, then $\mathcal{L} \dim[X]$ is an irreducible perverse sheaf. All irreducible perverse sheaves on Y are of the form $j_{!*}(\mathcal{L}[\dim X])$. If j is a closed immersion, then $j_{!*} = Rj_* = Rj_!$. If j is an open immersion, let $i: Y \setminus X \to X$ be the complement. Then $j_{!*}(\mathcal{F})$ is characterized by

$$
j^*j_{!*}(\mathcal{F}) \cong \mathcal{F}, \quad i^*j_{!*}(\mathcal{F}) \in {}^p D(Y \setminus X)^{\leq -1}, \quad i^!j_{!*}(\mathcal{F}) \in {}^p D(Y \setminus X)^{\geq 1}.
$$

Equivariance: We will exclusively be concerned with equivariant ℓ -adic sheaves. The general setup is as follows. Let k be an algebraically closed field and let G be a smooth affine group scheme of finite type over k. Let X be a reduced k-scheme of finite type with a G-action, such that there are *finitely many orbits*. We further suppose that the stabilizers for this action are *connected* subgroups of G. For example, $G \subset H$ could be a Borel subgroup of a reductive group H, and $X = H/G$ could be a flag variety for H.

Let $p: G \times X \to X$ be the projection and let $\pi: G \times X \to X$ be the action map. A perverse sheaf $\mathcal{F} \in \text{Perv}(X)$ is *G*-equivariant if there exists an isomorphism $p^*\mathcal{F} \cong \pi^*\mathcal{F}$. Under our assumptions, it turns out that if one such isomorphism exists, then there is a unique isomorphism satisfying certain cocycle conditions, as in the definition of equivariant coherent sheaves. For this reason, it is appropriate to define

$$
\operatorname{Perv}_G(X) \subset \operatorname{Perv}(X)
$$

to be the full subcategory consisting of G-equivariant objects. This category is stable under taking subquotients inside $Perv(X)$.

Theorem. The irreducible objects of $Perv_G(X)$ are in bijection with G-orbits on X. If j: $U \to X$ is the inclusion of an orbit, the corresponding irreducible perverse sheaf is

$j_{!*}(\overline{\mathbb{Q}}_{\ell}[\dim U]).$

Unfortunately, the definition of the equivariant (bounded, constructible) derived category $D_G(X)$ is not as easy. In particular, it is *not* the derived category of $Perv_G(X)$, nor is it the derived category of the abelian category of ordinary G-equivariant sheaves. The forgetful functor $D_G(X) \to D^b(X)$ is also not fully faithful. However, there do exist equivariant perverse truncation functors

$$
{}^p H^i(-) \colon D_G(X) \to \text{Perv}_G(X)
$$

which are jointly conservative. Thus, every object in $D_G(X)$ is built from finitely many exact triangles starting from objects in $Perv_G(X)$. Moreover, there is a six-functor formalism for G-equivariant maps.